

87234 Series

USB Peak/Avg Power Meter

Programming Manual

Ceyear Technologies Co., Ltd.

This Manual applies to the following models of USB Peak/Avg power Meter based on the firmware version of 1.0 and higher.

- 87234D USB Peak/Avg Power Meter
- 87234E USB Peak/Avg Power Meter
- 87234F USB Peak/Avg Power Meter
- 87234L USB Peak/Avg Power Meter

B.1 July 2022, Ceyear Technologies Co., Ltd. Version: Service Consultation: 0532--86889847 400--1684191 Technical support: 0532--86880796 Quality Supervision: 0532--86886614 0532--86889056 Fax: Website: www.ceyear.com Email: techbb@ceyear.com No. 98, Xiangjiang Road, Qingdao Economic & Technological Development Zone, Shandong Province Address: 266555 Postal code:

Foreword

Thank you for choosing and using 87234 series Peak/Avg power Meter developed and produced by Cevear Technologies Co., Ltd.! Integrating high, sophisticated cutting-edge and technologies. our products offer high cost performance among similar products.

We will take the responsibility to maximally meet your needs provide and you with high-quality measuring instruments and first-class after-sales service. We aim to provide "high quality and service", and considerate operate on the principle of making customers satisfactory products with our and services.

Manual No.

AV2.984.1302SC

Version

B.1 2022.07

Ceyear Technologies Co., Ltd.

Manual Authorization

The contents of this manual are subject to change without notice. The contents and terms used in this manual are interpreted by Ceyear Technologies Co., Ltd.

The copyright of the manual belongs to Cevear Technologies Co., Ltd, no modification can be made to the manual contents by any person unit without or approval of the Company, and no reproduction or propagation of the manual profits, can be made for otherwise, Ceyear Technologies Co., Ltd reserves the right of pursuing legal responsibilities from anv infringer.

Product warranty

The warranty period of this product is 18 months from the date of shipment. The instrument manufacturer will repair or replace the damaged components according to the user's requirements and actual conditions within the warranty period. For specific maintenance issues, see the contract.

Product quality certificate

This product is guaranteed to meet the specifications in this manual from the date of shipment. The calibration and measurement are completed by measuring bodies with national qualification, with relevant data to be provided for reference by users.

Quality/Environmental Management

This product complies with the quality and environmental management systems during R&D, manufacturing and testing. Ceyear Technologies Co., Ltd. is qualified and has passed ISO 9001 and ISO 14001 management systems.

Safety Precautions

Notice

The "Notice" symbol indicates some important information which will not cause danger. It reminds the user to pay attention to а certain operation process, operation method or the like. Failure to observe the rules or operate correctly may cause damage to the instrument or loss of important data. Proceed to the next step only after fully understanding and meeting the notice conditions indicated.

Tips

The "Tips" symbol indicates information tips. It reminds the user to pay attention to the instrument or certain operation process, operation method or the like. The purpose is to guide the instrument operator to use the instrument correctly.

Contents

Contents

1. MANUAL NAVIGATION	1
1.1. About the Manual	1
1.2 RELATED DOCUMENTS	1
2 REMOTE CONTROL	3
2.1 REMOTE CONTROL BASICS	3
2.2 INSTRUMENT PROGRAM PORT AND CONFIGURATION	
2.3 I/O LIBRARY	
2.4. ZEROING	
2.5 Performing Measurements	
2.6 Using Frequency Response Offset Table	
2.7 Setting Display Resolution	
2.8 Setting Average	
2.9 Setting Offset	
2.10 Setting Measurement Limits	
2.11 Status Report	
2.12 Storing/Recalling	
3. PROGRAM CONTROL COMMANDS	
3.1 DESCRIPTION OF COMMANDS	
3.2 GENERAL COMMANDS(IEEE488.2 COMMANDS)	

Contents

3.3 INSTRUMENT SUBSYSTEM COMMAND	42
4. PROGRAMMING EXAMPLES	157
4.1 BASIC OPERATION EXAMPLES	157
4.2 Advanced Operation Examples	161
4.3 APPLICATION EXAMPLES	166
5. ERROR DESCRIPTION	175
5.1 Error Message	175
5.2 METHOD TO OBTAIN AFTER-SALES SERVICES	179
APPENDIXES	
APPENDIX A ZOOM TABLE OF SCPI CLASSIFIED BY SUBSYSTEM	

1. Manual navigation

This chapter introduces the program control manual functions, chapter structure and main contents of the 87234 series USB Peak/Avg power Meter (hereinafter to as the 87243), as well as the instrument-related documents provided to users.

- About the Manual.....1
- Related Documents.....1

1.1. About the Manual

This manual introduces the methods for remote control of the 87234 and application of SCPI. Meanwhile, in order to make it convenient for users to quickly master the remote control programming methods, some programming examples are listed, and the basic concept of I/O function library is introduced. To facilitate your skillful use of such instrument, please read carefully and follow this manual in advance for correct operation.

SCPI (Standard Commands for Programmable Instruments) define the standards and methods for remote control of the instrument, and are the remote control programming language for programmable electronic test and measuring instruments. SCPI are based on the IEEE 488.2 standard and form. Please refer to http://www.scpiconsortium.orgfor details.

The manual details the program control command of the 87234.

The chapters of the program control manual include:

Remote Control

The methods for remote control of the instrument are summarized to make users get familiar with remote control quickly. It is divided into three parts: remote control basics, introducing program related concepts, software configuration, program port, SCPI, etc.; instrument port configuration method, introducing the connection method and software configuration method for program ports of the 87234; I/O function library, introducing the basic concept of instrument driver and basic installation instructions of IVI-COM/IVI-C driver.

• Program Control Commands

Common commands, instrument commands and compatible commands are introduced, and the functions, paraMeter and examples of SCPI are described.

• Programming Examples

The basic programming examples and advanced programming examples are provided in the way of text description and example code, and the explanation is provided to make it convenient for users to quickly master the remote control programming method of the 87234.

• Error Description

Error message description and method to obtain after-sales services are included.

Appendixes

Necessary reference information related to program control of the 87234 is provided, including zoom table of SCPIs.

1.2 Related Documents

The product documentation includes

- Quick Start Guide
- User's Manual

1. Manual navigation

- 1.2 Related Documents
- Program Control Manual

Quick Start Guide

This manual introduces the basic methods for configuration and start-up measurement of the instrument to enable users to quickly understand the characteristics of the instrument, and master the basic settings and basic operation methods. Main chapters include:

- Get Prepared
- Typical Applications
- Get Help

User's Manual

This manual describes the functions and operation methods of the analyzer in detail, including configuration, measurement, program control and maintenance, etc. The purpose is to guide users to fully understand the functional characteristics of the product and master common testing methods of the instrument. Main chapters include:

- Manual Navigation
- Overview
- Quick Start
- Operation Guide
- Menus
- Remote Control
- Troubleshooting and Repair
- Technical Indicators and Testing Methods
- Appendixes

Program Control Manual

This manual introduces remote programming basics, SCPI basics, SCPI, programming examples and I/O driver function library in detail. The purpose is to guide users to quickly and comprehensively master the program control commands and methods of the instrument. Main chapters include:

- Remote Control
- Program Control Commands
- Programming Examples
- Error Description
- Appendixes

This chapter introduces the remote control basics, remote control interface and configuration methods of the 87234, and briefly introduces the concept and classification of I/O instrument driver library. The purpose is to facilitate users to start to achieve remote control. Specific contents include:

•	Remote Control Basics
•	Instrument Program Control Port and Configuration28
•	<u>I/O Library</u> 30
•	<u>Zeroing</u> 30
•	Performing Measurements
•	Using Frequency Response Offset Table
•	Setting Display Resolution
•	Setting Average
•	Setting Offset
•	Setting Measurement Limit
•	Status Report
•	Storage/Loading
2.1	I Remote Control Basics
•	Program Control Interface
•	<u>Message</u> 7
•	SCPI Command8
•	Command Sequence and Synchronization18
•	Status Reporting System20
•	Programming Considerations
2.1	.1 Program Control Interface
•	LAN Interface
•	GPIB Interface
•	RS-232 Interface
•	USB Interface

Instruments with remote control function generally support two kinds of remote control interface: LAN, GPIB, RS-232 and USB, and the type of port supported by the specific model of instrument is determined by the function of the instrument.

The remote control interface and related VISA addressing string are described in the table below:

2.1 Remote Control Basics

Program control interface	VISA addressing string	Description
LAN (Local Area Network)	VXI-11 protocol: TC PIP::Addressograph[::LAN_device_name] [::INSTR] Raw socket protocol: TC PIP::Addressograph::port::SOCKET	The controller realizes remote control by connecting the instrument with the network port on the rear panel of the instrument. For details of the protocol, please refer to: 2.1.1.1 LAN Interface
GPIB (IEC/IEEE Bus Interface)	GPIB::primary address[::INSTR]	The controller realizes remote control by connecting the instrument with the port on the rear panel of the instrument. Follow the bus interface standard IEC 625.1/IEEE 418. For details, please refer to: 2.1.1.2 GPIB Interface
RS-232 (RecommendedStandard-232)		Instrument rear panel port. For details, please refer to: 2.1.1.3 RS-232 Interface
USB (Universal Serial Bus)	USB:: <vendor ID>::<product_id>::<serial_number>[::IN STR]</serial_number></product_id></vendor 	Instrument rear panel port. For details, please refer to: 2.1.1.4 USB interface

2.1.1.1 LAN Interface

An instrument with a network interface (hereinafter referred to as instrument) can be controlled remotely by computers in 10Base-T and 100Base-T. Various instruments are combined into a system in LAN and controlled uniformly by computers in it. In order to realize remote control in LAN, it should be equipped with port connector, network card and relevant network protocol in advance, and provided with relevant network services. Meanwhile, the host computer in the network should also be equipped with instrument control software and VISA library in advance. The three working modes of the network card are:

- 10Mbit/s Ethernet IEEE802.3;
- > 100Mbit/s Ethernet IEEE802.3u;
- > 1Gbit/s Ethernet IEEE802.3ab.

2.1 Remote Control Basics

The host computer and the instrument should be connected to the common TCP/IP protocol network through the network port. The cable between the computer and the instrument is a commercial RJ45 cable (Category 5 cable with or without shielding). During data transmission, the transmission speed of LAN is faster when data packet transmission is applied. Generally, the length of the cable between the computer and the instrument should not exceed 100m (100Base-T and 10Base-T). For more information about LAN communications, please refer to http://www.ieee.org.

Knowledges about the LAN interface are introduced below:

1) IP address

Physical connection of the network should be guaranteed for remote control on the instrument via the LAN. It is just required to set the address to the subnet in which the host computer is located via the network configuration interface of the instrument. For example, if the IP address of the host computer is 192.168.12.0, the IP of the instrument shall be set to 192.168.12.XXX, whereas XXX is the figure between 1 and 255.

When establishing a network connection, only the IP address is required. The VISA addressing string is as follows:

TC PIP::host address[::LAN device name][::INSTR] or

TCPIP: : host address: port: : SOCKET

Where:

- > TCPIP represents the network protocol used;
- host address represents the IP address or host name of the instrument, and is used for identifying and controlling the controlled instrument;
- > LAN device name defines the handle number of the protocol and subset (optional);
- VXI-11 protocol is selected for device 0;
- More recent high speed LAN instrument protocol is selected for high speed LAN instrument 0;
- INSTR represents the instrument resource type (optional);
- > port represents the socket port number;
- > SOCKET represents the raw network socket resource class.

Example:

The IP address of the instrument is 192.1.2.3, and the effective resource string of the VXI-11 protocol is:

TCPIP::192.1.2.3::INSTR

> To establish a raw socket connection, use:

TCPIP::192.1.2.3::5025::SOCKET

Tips

Method of recognizing multiple instruments in the program control system

If multiple instruments are connected in the network, the individual IP address and related resource string are used to distinguish. The host computer applies its own VISA resource string for instrument identification.

2.1 Remote Control Basics

2) VXI-11 protocol

The VXI-11 standard is based on the ONC RPC (Open Network Computing Remote Procedure Call) protocol, which is the network/transport layer of the TCP/IP protocol. The TCP/IP network protocol and associated network services are pre-configured for communication. Such connection-oriented communication, which follows the sequential exchange and can identify the interruption of the connection, ensures no loss of information.

3) Socket communication

The TCP/IP protocol connects the instrument to the network via LAN sockets. As a basic method used in computer network programming, the socket allows applications using different hardware and operating systems to communicate over a network. With this method, two-way communication between the instrument and the computer is realized through ports.

As a software class programmed specially, the socket defines the IP address, device port number and other necessary information for network communication, and integrates some basic operations in network programming. Sockets can be used after installing packaged libraries in the operating system. Two commonly used socket libraries are the Berkeley socket library for UNIX the Winsock library for Windows.

Sockets in the instrument are compatible with Berkeley sockets and Winsock through the application program interface (API). In addition, it is compatible with the API of other standard sockets. When SCPI are used to control the instrument, the socket program established in the program issues the command. Before using a LAN socket, the socket port number of the instrument must be set. The socket port number of the instrument is 5025.

2.1.1.2 GPIB Interface

As an instrument remote control interface widely used at present, GPIB interface is connected to different types of instruments through GPIB cable, so as to build a test system with the host computer. In order to realize remote control, the host computer should be equipped with GPIB bus card, driver and VISA library in advance. During communication, the host computer first addresses the controlled instrument through the GPIB bus address. The user may set the GPIB address and ID query string, and the GPIB communication language may be in the form of SCPI by default.

GPIB and its associated interface operations are defined and described in detail in ANSI/IEEE Standard 488.1–2003 and ANSI/IEEE Standard 488.2–1992. For details of the standards, please refer to the IEEE website: http://www.ieee.org.http://www.ieee.org/

GPIB processes information in bytes at the data transmission speed of up to 8MBps, which is fast. Since the data transmission rate is limited by the distance between the device/system and the computer, the following points should be noted when connecting GPIB:

- > Up to 15 instruments may be built through GPIB interface.
- The total length of the transmission cable should not be more than 15 m or twice the number of instruments in the system. In general, the maximum length of the transmission cable between the devices cannot exceed 2 m;
- > If multiple instruments are connected in parallel, a "live" cable is required;
- > The end of the IEC bus cable shall be connected to the instrument or host computer.

2.1.1.3 RS-232 interface

RS-232 is a traditional method to realize program control. Because it only sends and receives one bit of data at a time, the transmission rate is slower than GPIB or LAN, which is not commonly used at present. Similar to GPIB and LAN, instrument paraMeter, such as baud rate, need to be set when establishing communication in order to match the paraMeter with the host computer. RS-232 transmits SCPI command characters in ASCII form.

2.1.1.4 USB interface

To implement USB programming, a computer and signal generator need to be connected via a USB port with the VISA library installed in advance. VISA automatically detects and configures the instrument to establish a USB connection without the need to enter the instrument address string or install a separate driver.

USB Address:

Addressing string format: USB0::<vendor ID>::product ID>::<serial number>[::RAW]

Where:

- vendor ID> represents the manufacturer code;
- > <product ID> represents the instrument code;
- <serial number> represents the serial number of the instrument;

Example:

USB::13209::14336::SN100001::INSTR

13209: Manufacturer designator, which can be expressed as 0x3399 in hexadecimal;

14336: Instrument designator, which can be expressed as 0x3800 in hexadecimal;

SN100001: serial number of the instrument.

2.1.2 Message

The messages transmitted on the data cable are divided into the following two categories:

1) Interface message

During communication between the instrument and the host computer, the attention cable should be pulled down first, and then the interface message will be transmitted to the instrument through the data cable. Only instruments with GPIB bus function can send interface message.

2) Instrument message

For the detailed structure and syntax of the instrument message, see Section "2.1.3 SCPI command". The instrument message can be divided into two types as per the transmission direction, namely, command and instrument response. Unless otherwise stated, all remote control interfaces apply instrument message in the same way.

a) Commands:

Commands (programming messages) are messages sent by the host computer to the instrument for remote control of instrument functions and query of status information. Commands are divided into the following two categories:

> Based on the impact on the instrument:

-- setting commands: change the set state of the instrument, such as reset or setting frequency.

-- query commands: query and return data, for example: identify the instrument or query the parameter value. Query commands end with the suffix question mark.

Based on the definition in the standard:

-- common commands: with functions and syntax to be defined by IEEE488.2, they are applicable to all types of instruments (if realized)

2.1 Remote Control Basics

The purpose is for management of standard status register, reset and self-detection, etc.

-- instrument control commands: instrument characteristic commands, used to realize instrument functions, such as setting frequency.

The syntax also follows the specifications of SCPI.

b) Instrument responses:

Instrument responses (response message and service request) are the query result information sent by the instrument to the computer. Such information includes measurement results, instrument status, etc.

2.1.3 SCPI

- > Description of SCPI......9

2.1.3.1 Introduction to SCPI Command

SCPI (Standard Commands for Programmable Instruments) are a command set for all instruments established based on Standard IEEE488.2. The main purpose is to make the same function have the same program command to achieve the universality of program control commands.

SCPI consist of a command header and one or more paraMeter. The command header is separated from the paraMeter by spaces and contains one or more key fields. A command with direct suffix question mark is a query command. Commands are divided into common commands and instrument commands that have different syntactic structures. SCPI have the following characteristics:

1) Program control commands are oriented to test function rather than describing instrument operation;

2) Program control commands reduce the repetition of similar test function realization process, and ensure the compatibility of programming.

3) Program control messages are defined in layers that are hardware independent of the communication physical layer;

4) Program control commands are independent of programming methods and languages. The test program of SCPIs is easy to transplant;

5) Program control commands are scalable and can adapt to different scale of measurement control;

6) SCPI have been a "living" standard for their scalability.

If you are interested in learning more about SCPI, please refer to:

IEEE Standard 488.1–2003, IEEE Standard Digital Interface for Programmable Instrumentation. New York, NY, 1998.

IEEE Standard 488.2–1992, IEEE Standard Codes, Formats, Protocols and Comment Commands for Use with ANSI/IEEE Std488.1–2003. New York, NY, 1998

Standard Commands for Programmable Instruments(SCPI) VERSION 1999.0.

For program control command set, classification and description of the 87234, please refer to:

1) "3. Program control commands" in this Manual;

2) "Appendix A Zoom Table of SCPI commands classified as per subsystems" of the Manual.

2.1.3.2 Description of SCPI

1) General terms

The following terms apply to this section. To better understand the chapters, you shall understand the exact definitions of the terms.

Controller

A controller is any computer used to communicate with the SCPI device. A controller may be a PC, minicomputer, or a plug-in card on a cage. Some AI devices can also be used as controllers.

Device

A device is any device that supports SCPI. Most of the devices are electronic measurement or excitation devices that use GPIB interfaces for communication.

Program message

A program message is the combination of one or more SCPI commands that have been correctly formatted. Program messages tell the devices how to measure and output the signals.

Response message

A response message is a set of data of specified SCPI formats. Response messages always come from the devices to controllers or listening devices. Response messages tell the controllers about the internal state or measured values of the devices.

Command

A command is an instruction that satisfies the SCPI standard. The combination of commands controlling the devices forms a message. In general, a command includes keywords, paraMeter, and punctuation.

Event command

Event-type program control commands cannot be queried. An event command generally has no corresponding front panel key setting, and its function is to trigger an event at a specific time.

Query

A query is a special type of command. When a control device is queried, a response message appropriate to the controller syntax requirements is returned. A query statement always ends with a question mark.

2) Command type

There are two types of SCPI: common commands and instrument commands. Figure 2.1 shows the difference between the two commands. Common commands, defined by IEEE 488.2, are used to manage macros and status registers and for synchronization and data storage. Because common commands all start with an asterisk, they are easy to be recognized. For example, *IDN?, *OPC, *RST are all common commands. Common commands are not part of any instrument commands, and the instrument interprets them in the same way regardless of the current path setting of the commands.

Instrument commands are easy to be recognized because they contain a colon (:). A colon is used in the beginning of an expression or between two keywords, for example: FREQuency[:CW?]. According to the internal function module of the instrument, instrument commands are divided into sub-sets of corresponding subsystem commands. For example, the power subsystem (:POWer) contains power-related commands, while the status subsystem (:STATus) contains commands for the status control register.

2.1 Remote Control Basics

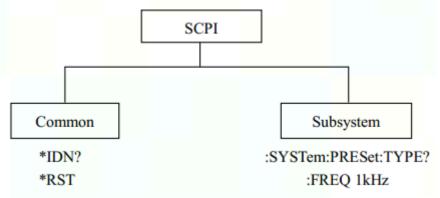


Figure 2.1 Types of SCPI

3) Instrument Command Syntax

A typical command consists of a keyword prefixed with a colon. The keyword is followed by paraMeter. The following is an example of a syntax declaration:

[:SENSe:]FREQuency[:CW|FIXed] MAXimum|MINimum

In the example above, the [:CW|FIXed] in the command follow : FREQuency closely without any space. MINimum|MAXimum immediately following [:LEVel] is the parameter. There is a space between the command and the parameter. Other parts of the syntax expression are described in Table 2.2 and Table 2.3.

Table 2.2 Special characters in	command syntax
---------------------------------	----------------

Symbol	Meaning	Example
I	The vertical bar between the keyword and the parameter represents multiple options.	[:SENSe:]BANDwidth BWIDth HIGH LOWer
		BANDwidth and BWIDth are optional;
		HIGH and LOWer are optional.
0	A square bracket indicates that the contained keyword or parameter is optional	[:SENSe:]BANDwidth? SENSe is optional.
	when forming a command. The command will be executed even when such implied keyword or parameter is ignored.	
<>	The part in angle brackets indicates that the command is not used	[:SENSe:]FREQency[:CW FIXed] <val>[unit]</val>
	in the literal sense. They represent the part that must	In this command, <val></val>
be contained.	be contained.	must be replaced with actual frequency.
		[unit] is an omittable unit.
		For example: FREQ 3.5GHz
		FREQ 3.5e+009
{}	The part in braces indicates that the parameter is optional.	MEMory:TABLe:FREQuency <val>{,<val>}</val></val>
		For example: MEM:TABL:FREQ 5e7

Characters, keywords and syntax	Example
Uppercase characters represent the minimum set of characters required to execute a command.	[:SENSe:]FREQuency[:CW FIXed]?, FREQ is the short format part of the command.
Lowercase character of the command is optional; such flexible format is called "flexible listening". See the section "ParaMeter and Responses of Commands" for more information.	:FREQuency :FREQ,:FREQuency or or :FREQUENCY Either of them is correct.
When a colon is between the two command mnemonics, it moves the current path in the command tree down by one level. For more information, please refer to the command path part in section "Command Tree".	:TRIGger:MODE? TRIGger is the topmost keyword of this command.
If the command contains more than one parameter, adjacent paraMeter are separated. The parameter is not part of the command path, so it does not affect the path layer.	MEMory:TABLe:FREQuency <val>{,<val>}</val></val>
The semicolon is used to separate 2 adjacent commands, without affecting current command path.	:FREQ 2.5GHZ; :POW 10DBM
Blank characters, such as <space> or <tab>, are usually ignored as long as they do not appear between keywords or in keywords. However, you must separate the commands and paraMeter with blank characters, which does not affect the current path.</tab></space>	:FREQuency or :POWer :LEVel6.2 is not allowed. :LEVel and 6.2 must be separated by a space, namely, :POWer:LEVel 6.2.

Table 2.3 Command syntax

The simplified syntax specification is shown in Figure 2.2.

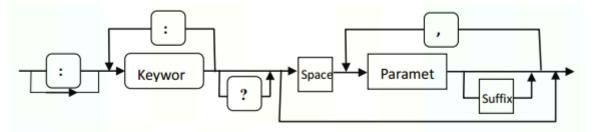


Figure 2.2 Types of SCPI

For example, the syntax expression of "[:SENSe[1]:]FREQuency[:CW|FIXed] <numeric parameter>" can be expressed as follows.

2.1 Remote Control Basics

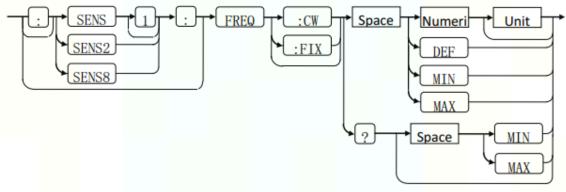


Figure 2.3 Types of SCPI

Remarks:

1) In the above chart, no spaces may be added where spaces are not indicated as required. Spaces may be 1 or more. If the units are omitted, the standard unit of frequency, Hz, and the standard unit of time, seconds, are used.

2) Rounded rectangles indicates the actual characters required for the keywords or commands, such as ":", ",", "?", "1", etc.; Right-angled rectangles need to be replaced by actual characters, numbers, etc. For example, the "value" cannot appear in the command, and it needs to be replaced by the actual value, such as 5e+007, etc.

3) Without considering the short and long format of the keyword, the frequency of Channel A is set to 50MHz, and the above chart has the following forms (only the short format of the keyword is taken. Since there are many units of frequency, such as Hz, kHz, MHz, GHz, THz, etc., it is no longer given one by one due to space limitations. It is only necessary to replace 5.0e+007 with corresponding units, such as 50MHz, 5e+007Hz, 0.05GHz, etc.).

a)	:SENS1:FREQ:CW 5.0e+007	No keywords omitted
b)	SENS1:FREQ:CW 5.0e+007	The ":" before SENS1 omitted.
c)	SENS:FREQ:CW 5.0e+007	"1" omitted.
d)	FREQ:CW 5.0e+007	SENS omitted.
e)	:SENS1:FREQ:FIX 5.0e+007	No keywords omitted
f)	SENS1:FREQ:FIX 5.0e+007	The ":" before SENS1 omitted.
g)	SENS:FREQ:FIX 5.0e+007	"1" omitted.
h)	FREQ:FIX 5.0e+007	SENS omitted.
i)	:SENS1:FREQ 5.0e+007	CW or FIX omitted
j)	SENS1:FREQ 5.0e+007	The ":" before SENS1 and CW or FIX omitted.
k)	SENS:FREQ 5.0e+007	"1" and CW or FIX omitted.
I)	FREQ 5.0e+007	SENS and CW or FIX omitted.
<u>.</u>		

4) For Channel B and channel 8 frequencies, SENS2 and SENS8 cannot be omitted.

5) MIN and MAX can be used as paraMeter of the set command or as paraMeter of the query command. DEF can only be used as a parameter of the set command. The specific values of MIN, MAX, and DEF are related to the instrument.

a) FREQ DEF

Set the frequency of Channel A to the default value.

2.1 Remote Control Basics

b) FREQ? MAX a value without unit. Query the maximum settable frequency of Channel A and return

6) If the long and short forms of keywords are considered, and commands with units are not considered, there are 1632 forms of commands in the above chart. Users don't have to care about all forms. As long as it can be used flexibly, it is enough. A simple calculation is performed below, and interested users can calculate by themselves.

a) First calculate the case where SENS is defaulted, noted as N1. There are 2 forms of FREQ/FREQuency, noted as N11. There are four forms of CW/FIX/FIXed/Omitted, noted as N12. There are 7 paraMeter of the set command: Value/DEF/DEFault/MIN/MINimum/MAX/MAXimum. The paraMeter of the query command are MIN/MINimum/MAX/MAXimum/Omitted, i.e., there are 12 types of paraMeter, which are recorded as N13, then $N1 = N11 \times N12 \times N13 = 2 \times 4 \times 12 = 96$

b) Then calculate the case where SENS is not defaulted, noted as N2. The first ":" has 2 types, omitted and not omitted, noted as N21. There are 2 types of SENS/SENSe. There are 4 types of suffixes: 1/2/6/Omitted, i.e., there are 8 (2×4) types of SENS keywords, noted as N22. SENS keyword forms a combination with the following keywords, then

 $N2 = \tilde{N}21 \times N22 = 2 \times 8 \times N1 = 16 \times N1$

c) Let there be a total of N forms, then

 $N = N1 + N2 = 17 \times N1 = 1632$

4) Command tree

Most remote control programs apply instrument commands. When parsing such commands, SCPI apply a file system-like structure called command tree, as shown in Figure 2.4:

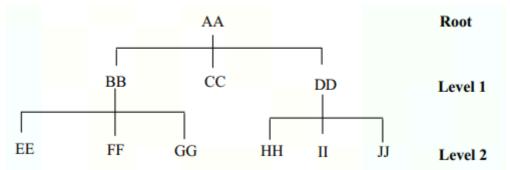


Figure 2.4 Diagram of the simplified command tree

The top command is the root command, or "root" for short. When a command is parsed, follow a specific path to the next level of command according to the tree structure. For example, in :POWer:ALC:SOURce?, : POWer stands for AA, :ALC stands for BB, :SOURce stands for GG, and the entire command path is (:AA:BB:GG).

A software module in instrument software - **command interpreter**, is responsible for parsing each received SCPI. The command interpreter breaks commands into individual command elements by using a series of rules that distinguish the path of the command tree. After parsing the current command, keep the current command path unchanged. The advantage of this is to parse subsequent commands more quickly and efficiently since that the same command keyword may appear in different paths. After booting or *RST (reseting) the instrument, current command path is reset to root.

2.1 Remote Control Basics

5) Command paraMeter and responses

SCPI define different data formats in the use of program and response messages to comply with the principles of "*flexible listening*" and "*precise speaking*". For more information, please refer to IEEE488.2. "*Flexible listening*" means that the formats of the commands and paraMeter are flexible.

For example, to set the frequency offset status command :FREQuency:OFFSet:STATe ON|OFF|1|0.

The following command formats are all used to set the frequency offset function to on:

:FREQuency:OFFSet:STATe ON, :FREQuency:OFFSet:STATe 1,

:FREQ:OFFS:STAT ON, :FREQ:OFFS:STAT 1

Each parameter type has one or more corresponding response data types. During query, a data type will be returned for a numerical parameter, and the response data is precise and strict, known as "**precise speaking**."

For example, during query of the power state (:POWer:ALC:STATe?), when it is ON, the response data returned is always 1 during query, regardless of whether the previously sent setting command is :POWer:ALC:STATe 1 or :POWer:ALC:STATe ON.

Parameter type	Response data type
Numerical	Real number or integer
Extended numerical	Integer
Discrete	Discrete
Boolean	Digital boolean
String	String
Blocks	Finite-length blocks
	Infinite-length blocks
Non-decimal numeric types	Hexadecimal
	Octal
	Binary

Table 2.4 Parameter and response types of SCPI

Numerical paraMeter

Numeric paraMeter can be used in both instrument-specific commands and common commands. A numeric parameter receives all the usual decimal counting methods, including signs, decimals, and scientific notation. If a device only accepts a specified numeric type, such as an integer, it will automatically round up the received numeric paraMeter.

Examples of numeric paraMeter:

- 0 No decimal point
- 100 Optional decimal point
- 1.23 Signed bit

4.56e<space>3 Index mark e can be followed by a space

- -7.89E-01 Index marker e can be uppercase or lowercase
- +256 Positive lookahead allowed

.5

Decimal points can be used first

Extended numerical paraMeter

Most measurements related to instrument commands use extended numeric paraMeter to specify physical quantities. Extended numerical paraMeter receive all numeric paraMeter and additional special values. All the extended numeric paraMeter receive MAXimum and MINimum as parameter values. Whether other special values, such as UP and DOWN, will be received is determined by the ability of the instrument to parse. All effective paraMeter will be listed in the table of SCPI.

Note: Extended numeric arguments do not apply to common commands or STATus subsystem commands.

Examples of extended numeric paraMeter:

101 Numeric parameter

1.2GHz GHz can be used as an index (E009)

200MHz MHz can be used as an index (E006)

-100mV -100 millivolts

10DEG 10 degrees

MAXimum Maximum effective setting

MINimum Minimum effective setting

UP Increase by a step

DOWN Reduce by a step

Discrete paraMeter

When the number of parameter values to be set are finite, they are identified by discrete paraMeter. Discrete paraMeter use mnemonics to represent each valid setting. Like program command mnemonics, discrete parameter mnemonics have two formats, long and short, and allow for mixture of upper and lower cases.

In the following examples, discrete paraMeter and commands are used together.

:TRIGger[:SEQuence]:SOURce BUS|IMMediate|EXTernal

BUS GPIB, LAN, RS-232 trigger

IMMediate Trigger immediately

EXTernal Trigger externally

Boolean paraMeter

A Boolean parameter represents a true or false binary condition, which can only have four possible values.

Examples of Boolean paraMeter

ON	Logically true
OFF	Logically false
1	Logically true
0	Logically false

String paraMeter

2.1 Remote Control Basics

String paraMeter allow ASCII strings to be sent as paraMeter. Single quotes and double quotes are used as separators.

The following are example of string paraMeter:

'This is Valid' "This is also Valid" 'SO IS THIS'

Real response data

Most of the test data are of real number type, and their formats can be basic decimal notation or scientific notation, which are supported by most advanced programming languages.

Examples of real response data:

1.23E+0 -1.0E+2 +1.0E+2 0.5E+0 0.23 -100.0 +100.0 0.5

Integer response data

An integer response data is a decimal expression of an integer value containing signed bit. When querying the status register, most of the response data returned are of integer type.

Examples of integer response data:

0 Sign bit optional				
+100 Positive lookahead allowed				
-100	Negative lookahead allowed			
256	No decimal point			

Discrete response data

Discrete response data are basically the same as discrete paraMeter, only that the return format of discrete response data is only a short form in uppercase.

Examples of discrete response data:

INTernal	Stabilization mode is internal			
EXTernal	Stabilization mode is external			

MMHead Stabilization type is millimeter wave source module

Digital Boolean response data

A binary value 1 or 0 is returned as Boolean response data.

String response data

String response data and string paraMeter are alike. The main difference is that the separators of string response data are double quotes instead of single quotes. Double quotes can also be embedded in string response data, and there may be no characters between the double quotes.

Here are some examples of string response data:

"This is a string"

"one double quote inside brackets: ("")"

Arbitrary data block

See Section 7.7.6 of IEEE 488.2 for <Arbitrary data block>.

#nNNN...Nddd.....ddd<LF>

Data ____ Data ____ newline character indicating the end of the data block.

└── Data length (i.e., the number of bytes of d)

----- Number of bits of data length (i.e., the number of bits of N)

The marker for the start of the data block.

For example: $#42004 \dots$ in <LF> n = 4 and N = 2004.

6) Number system of commands

The value of the command can be entered in binary, decimal, hexadecimal or octal format. When using binary, hexadecimal or octal format, a proper identifier is required before the value. The decimal format (the default format) does not require an identifier. When a value is entered without an identifier in front of it, the device will ensure it to be in decimal format. The following list shows the identifiers required for different formats:

- > #B indicates that the number is a binary number;
- #H indicates that the number is a hexadecimal number;
- > #Q indicates that the number is an octal number.

The following are various representations of the decimal number 45 in SCPI:

#B101101

#H2D

#Q55

The following example sets the RF output power to 10 dBm (or a value of the equivalent value of the currently selected unit, such as DBUV or DBUVEMF) with a hexadecimal value of 000A.

:POW #H000A

When using a non-decimal format, a measurement unit, such as DBM or mV, is not used with the value.

7) Command line structure

A command line may contain multiple SCPI. To indicate the end of the current command line, the following methods may be used:

 \Box Line feed;

□ Line feed and EOI;

EOI and the last data byte.

Commands on the command line are separated by semicolons, and commands belonging to different subsystems begin with a colon. For example:

2.1 Remote Control Basics

MMEM:COPY "Test1", "MeasurementXY";:HCOP:ITEM ALL

The command line contains two commands: the first one belongs to the MMEM subsystem, and the second belongs to the HCOP subsystem. If adjacent commands belong to the same subsystem with repeated command path, they can be expressed in abbreviation. For example:

HCOP:ITEM ALL;:HCOP:IMM

The command line contains two commands: both of them belong to the HCOP subsystem, with the same first level. Therefore, the second command can start from the next level of HCOP, and the colon for starting the command can be omitted. It can be abbreviated as follows:

HCOP:ITEM ALL;IMM

2.1.4 Command Sequence and Synchronization

IEEE488.2 defines the difference between overlapping and sequential commands:

- Sequential commands are sequences of commands that are executed continuously. Each command is usually executed faster;
- An overlapping command is one that is not executed automatically before the next command is executed. It usually takes longer to process overlapping commands, and programs are allowed to process other events synchronously during the period.

Even if there are multiple setting commands on a command line, they may not be executed in the order they were received. To ensure that commands are executed in a certain order, each command must be sent on a separate command line.

Example: the command line contains setting and query commands

If multiple commands on a command line contain query commands, the query results are unpredictable. A fixed value is returned for the following command:

:FREQ:STAR 1GHZ;SPAN 100;:FREQ:STAR?

Returned value: 1000000000 (1GHz)

The following command returns an unfixed value:

:FREQ:STAR 1GHz;STAR?;SPAN 1000000

The returned result may be the current starting frequency value because the host program will delay execution of the command. If the host program executes after receiving the command, the returned result may also be 1GHz.

Tips

Setting commands are sent separately from query commands

General rules: in order to ensure the correctness of returned results of query commands, setting commands and query commands should be sent in different program messages.

2.1.4.1 Prevent Overlapping Execution of Commands

In order to prevent overlapping execution of commands, multithreading or commands *OPC, *OPC? or *WAI may be applied, which are executed only after the hardware setting is completed. During programming, the computer may force a period of time to synchronize certain events. The

descriptions are shown below:

> The controller program applies multi-threading

Multi-threading is used to wait for command completion and synchronization between the UI and program control, that is, to wait for *OPC? Completion in separate threading without interfering GUI or program threading execution.

> The application of the three commands in synchronous execution is shown in the table below:

Method	Action	Programming method
*OPC	After the command is executed, set it in the operation completion bit of the ESR register.	Set to ESE BIT0; Set to SRE BIT5; Send overlapping commands and *OPC; Wait for service request (SRQ); Service request represents that the overlapping command has been executed.
*OPC?	Stop executing the current command until 1 is returned. The command is returned only when it is in the operation completion bit of the ESR register, indicating that the previous command has been processed.	Terminate processing of the current command before executing other commands, and send the command directly after the current command.
*WAI	Before the execution of *WAI, wait for all commands to be sent before proceeding with unfinished commands.	Terminate the processing of the current command before executing other commands, and send the command directly after the current command.

Table 2.5 Command usage

In the case that the processing time of overlapping command is short, the command *WAI or *OPC may be used after the overlapping command to achieve command synchronization. In order to execute other tasks synchronously while the computer or instrument is waiting for the completion of overlapping commands, the following synchronization techniques may be applied:

- OPC and service request
- 1) Set the OPC mask bit of ESE (bit0): *ESE 1;
- 2) Set the bit5 of SRE: *SRE 32 enable ESB service request;
- 3) Send overlapping commands and *OPC;
- 4) Wait for service request.

Service request represents that the overlapping command has been executed.

- OPC? and service request
- 1) Set the bit4 of SRE: *SRE 16 enable MAV service request;
- 2) Send overlapping commands and *OPC?;
- 3) Wait for service request.

Service request represents that the overlapping command has been executed.

2.1 Remote Control Basics

Event status register (ESE)

1) Set the OPC mask bit of ESE (bit0): *ESE 1;

2) Send only overlapping commands instead of *OPC, *OPC or *WAI;

3) Send "*OPC;*ESR?" in timer for cyclic query of the operation status.

The returned value (LSB) 1 indicates completion of the overlapping command.

* OPC? and short timeout

1) Send only overlapping commands instead of *OPC, *OPC or *WAI;

2) Send "<short timeout>; *OPC?" in timer for cyclic query of the operation status;

3) A return value (LSB) equal to 1 indicates that the execution of the interleave command is complete. In case of timeout, it is during operation.

4) Reset the timeout value to the old value;

5) Send the command "SYStem:ERRor?" to clear the error queue, and delete the message "-410, query interrupt".

The returned value (LSB) 1 indicates completion of the overlapping command.

2.1.5 Status Reporting System

The status reporting system stores all operation status information for the current instrument, including error message. They are stored in status registers and error queues respectively, and can be queried through a remote control interface.

\succ	Structure of Status Register	<u></u> 20
	Structure of SCPI Status Register	<u></u> 21
	Description of Status Register	<u></u> 22
	Application of Status Reporting System	<u></u> 25
≻	Reset Status Reporting System	<u></u> 27

2.1.5.1 Structure of Status Register

Status registers are described by classification below:

1) STB, SRE

The status byte (STB) register and its related mask register – service request enable register (SRE), comprise the top register of the status reporting system. STB saves the general working state of the instrument by collecting the information of lower registers.

2) ESR, SCPI status register

STB receives information from the following registers:

- > The value of the event status register (ESR) and the event status enable (ESE) mask register.
- SCPI status register includes: STATus:OPERation and STATus:QUEStionable registers (SCPI definition),

which contain the specific operation information of the instrument. All SCPI status registers have the same internal structure

(For details, see 2.1.5.2 "SCPI status register structure"

of the program control manual).

3) IST,PPE

Similar with SRQ, IST ("Individual Status") marks a separate bit consisting of all statuses of the instrument. The associated parallel poll enable register (PPE) determines the STB data bits for IST marking.

4) Output buffer

It stores the messages returned by the instrument to the master. It does not belong to the status report system, but determines the MAV position value of the STB.

SRE, ESE

SRE may be used as the enable part of STB. Similarly, ESE may be used as the enable part of ESR.

2.1.5.2 Structure of SCPI Status Register

Each standard SCPI register consists of five parts. Each part contains 16 bits and is functionally independent. For example, one bit is assigned for each hardware status and valid for all five parts of the register. If Bit15 is set to 0, the value of the register is positive integer data.

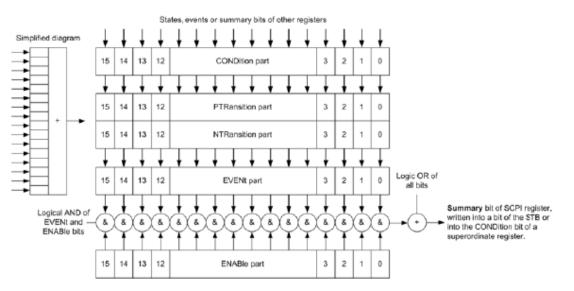


Figure 2.5 Structure of status register

It can be seen from the figure above that the status register consists of five parts, which are respectively described as follows:

Condition register

In this part, the summary bit of hardware or lower registers are directly written, reflecting the working state of the current instrument. This register is read only, not writable. It reads but not clearing the value.

> Positive/negative transition register

The two transition registers define the state transition bit of the condition register stored in the

2.1 Remote Control Basics event register.

The positive transition register is similar to the transition filter. When a bit of the condition register is transformed from 0 to 1, relevant PTR bit determines whether the event bit is set to 1, as shown below:

- -- PTR bit = 1: the event bit is set.
- -- PTR bit =0: the event bit is not set.

The positive transition register is readable and writable. It reads but not clearing the value.

The negative transition register is similar to the transition filter. When a bit of the condition register is transformed from 1 to 0, relevant NTR bit determines whether the event bit is set to 1, as shown below:

- -- NTR bit = 1: the event bit is set.
- -- NTR bit = 0: the event bit is not set.

The positive transition register is readable and writable. It reads but not clearing the value.

> Event register

This part indicates whether the event has occurred since the last reading and whether the content of the condition register is stored. It represents only the event passed through the transition register. It can only be changed by the instrument and read by the user. The value will be cleared after reading. The value of this part is often equal to the value of the entire register.

> Enable register

This part determines whether the related event bit acts on the final summary data. The bits of each enable part is the sum of related enable bits. The logical operation result of this part is or not the summary bit.

- enable bit = 0: the related event bit does not act on the summary data.
- enable bit = 1: the related event bit acts on the summary data.

This part is readable and writable. It reads but not clearing the value.

Summary bit

The summary bit of each register consists of the event and the enable part. The result enters the condition part of the upper register. The instrument automatically generates the summary bit for each register so that events can cause different levels of service requests.

2.1.5.3 Description of Status Register

The status registers are detailed as follows:

1) Status byte (STB) and service request enable register (SRE)

IEEE488.2 defines the status byte (STB). The rough instrument status is reflected by collecting the information of lower registers. Bit6 is equal to the summary data of other status byte bits. The result of a comparison between the status byte and the condition part of the SCPI register may be assumed to be the top in the SCPI hierarchy. The value of status byte may be read through common command "*STB?" or serial query.

The status byte is connected to the service request enable register (SRE). Each bit of the status byte corresponds to a bit in SRE. Bit6 of SRE is ignored. If one of the bits in SRE is set and the related STB bit changes from 0 to 1, a service request (SRQ) will be generated. Common command "*SRE" is used to set SRE, and common command "*SRE?" used to read SRE. The status byte is described in Table 2.6 Description of status byte:

Bit	Meaning
0	Not used.
1	Device related.
2	The error queue is not empty Set to this bit when a new error is inserted into the error queue. If related SRE bit enables the bit, a service request will be generated when a new error is generated in the error queue, so that the error can be identified and the error message can be queried. Such method effectively reduces errors in program control.
3	Summary bit of inquiry status register Set to this bit only when the event bit of the inquiry status register and the related enable bit are set to 1. This bit represents a queriable status of the instrument. Specific instrument status information can be obtained by querying the inquiry status register of the status register.
4	MAV bit (message available) Set to this bit if the output queue information is readable. This bit is used when the controller queries instrument information.
5	ESB bit Summary bit of the event status register. Set to this bit when one of the bits in the event status register is set and the corresponding bit in the event status enable register is enabled. The bit of 1 indicates a serious error in the instrument. The specific error message can be found by querying the event status register.
6	MSS bit (master status summary bit) Set this bit if the instrument triggers a service request.
7	Summary bit of operation status register Set to this bit when the event bit of the operation status register and the corresponding enable bit are set to 1. This bit indicates that the instrument has performed an operation, the type of which can be obtained by querying the operation status register.

Table 2.6 Description of status byte

2) IST flag and parallel poll enable (PPE) register

The IST identifies the combination of the overall instrument state with a single data bit. The flag can be obtained by a parallel poll or by sending the command "*IST?". The associated parallel poll enable register (PPE) determines the STB data bits for IST marking. STB data bits are in phase with PPE data bits, and the usage of bit6 is opposite to bit6 in SRE. The IST flag is equal to the threshold of all results. The command "*PRE" may be used to set PPE, and the command "**PRE?" used to read PPE.

3) Event status register (ESR) and event status enable register (ESE)

IEEE488.2 defines ESR. The command "*ESR?" may be used to read the event status register (ESR). ESE belongs to the enable part of SCPI register. If one of the bits is 1 and one of the bits in the corresponding ESR changes from 0 to 1, the ESB bit of STB should be set to 1. The command "*ESE" may be used to set ESE, and the command "*ESE?" used to read ESE.

2.1 Remote Control Basics

Bit	Meaning
0	Operation completed Set to this bit when the previous commands have been executed and the command *OPC has been received.
1	Not used.
2	Query error Set to this bit when the controller reads the instrument data without sending the query command, or sends a new command before reading the query data. It indicates that there is a query error, for which the query cannot be executed.
3	Instrument error Set to this bit when there is an instrument error. Error code range: -300399, or positive error code. Specific error message can be found in relevant information in the error queue.
4	Execution error Set to this bit when a syntactically correct command is received but cannot be executed, and an error with code ranging from -200 to -300 is generated in the error queue.
5	Command error Set to this bit when the syntax of the command received is incorrect. Error code range: -100200. Specific error message can be found in relevant information in the error queue.
6	User request Set to this bit when the instrument is switched to manual control mode.
7	Power ON Set this bit when the instrument is powered on.

Table 2.7 Description of event status byte

4) Status: operation register

Status: The operation register contains information about the current operation of the instrument and information about the previously executed operations. The operation register value can be read by the command "STATus:OPERation:CONDition?" or "STATus:OPERation[:EVENt]?" to read the operation register value. The register is described in Table 2.8 below.

Bit	value	Definition
0	1	Unused
1	2	Channel A calibration status
2	4	Channel B calibration status (for dual-channel only)
3	8	USB interface channel calibration status
4-14	-	Unused
15	-	Always 0

Table 2.8 Status: operation register description

5) Status: question register

The register contains instrument status that does not meet specification requirements. The register value may be queried through the command "STAT:QUES:COND" or "STAT:QUES:EVEN". The register is described in Table 2.9 below.

Tips

Query register

Status: the question register has collected the information of all lower sub-registers (for example, bit2 has collected all time related information). Since each path corresponds to a separate sub-register, in case of a status bit error of the question register, it is required to go back to the sub-register of the path to check for the specific error source. By default, the sub-register status being queried belongs to the currently selected path.

Bit	value	Definition
0-2	-	Unused
3	8	Power Summary
4-7	-	Unused
8	256	Calibration Summary
9	512	Power-on self-test
10-14	-	Unused
15	-	Always 0

Table 2.9 Status: question register description

2.1.5.4 Application of Status Reporting System

The status reporting system is used to monitor the status of one or more instruments in a test system. In order to correctly realize the function of the status reporting system, the controller in the test system must receive and evaluate the information of all instruments. Standard methods used include:

1) Service request (SRQ) initiated by the instrument;

2) Serial query of all instruments in the bus system, initiated by the controller in the system, in order to find the initiator of the service request and the reason.

- 3) Parallel query of all instruments;
- 4) Program command to query the status of specific instruments;

5) Query of error queue.

1) Service request

In some cases, the instrument sends a service request (SRQ) to the controller to obtain the controller's service, and the controller initiates an interrupt to enter the corresponding interrupt handler. According to Figure 2.5, an SRQ is typically initiated by one or more status bytes and by bits 2, 3, 4, 5 or 7 of the related enable register (SRE). These bits, in turn, make up advanced registers, error queues or output buffers. In order to use all the service requests as far as possible, all bits in

2.1 Remote Control Basics

enable registers SRE and ESE should be set to 1.

Example: use the command *OPC to generate SRQ at the end of the sweep.

a) Recall the function InstrWrite to write the command "*ESE 1", and set to ESE bit0 (operation completed).

b) Recall the function InstrWrite to write the command "*SRE 32", and set to SRE bit5 (ESB).

c) Recall the function InstrWrite to write the command "*INIT;*OPC", and SRQ is generated after the operation is completed.

After instrument setting, the instrument generates a SRQ.

SRQ can only be initiated by the instrument. In case of an instrument error, the controller program should allow a service request to be made to the instrument and handled by a dedicated interrupt service program.

2) Serial query

Similar to the command *STB, serial query is used to query the status byte of the instrument. Serial query adopts the method of interface message, so the query speed is fast. IEEE 488.2 defines the specific method for serial query. The method is mainly used to quickly obtain the status of one or more instruments connected with the controller in the test system.

3) Parallel query

In the test system, the controller sends an information bit to the data cable through a command, and can query 8 instruments at the same time. The data configured on the data cable of the instrument is a logical "0" or "1". In addition to the conditions under which the SRE register determines the SRQ to be generated, the bits of parallel poll enable register (PPE) and STB register should be subject to AND operation. The result obtained is sent to the controller of parallel query as the response result after OR operation and NOT operation, or the result may be obtained through the command *IST.

In parallel query, first the instrument should be set to the parallel query status through the command PPC, which allocates one data cable to the instrument and determines whether the bit is reversed in response. The PPE register is used when executing parallel query. Parallel query is mainly used for the controller to quickly locate which instrument has sent the service request. Therefore, the same values should be set for the registers SRE and PPE.

4) Query instrument status

The following two commands may be used to query each part of the status register:

Command *ESR?, *IDN?, *IST?, *STB? is used to query the advanced register;

☐ The status system command is used to query the SCPI register (for example: STATus:QUEStionable...).

The returned value of the register being queried is usually in decimal format and is detected by the controller program. For more details on why SRQ is generated, parallel query is usually done after SRQ.

Description of response data bit

The STB and ESR registers contain 8 bits, and the SCPI register contains 16 bits. The returned value of the query status register is in decimal format. The decimal value is equal to the sum of each bit and respective weight.

The relationship between the bit and the weight is shown in the figure below:

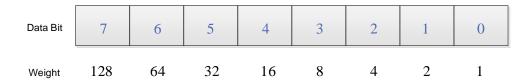


Figure 2.6 Relationship between the bit and the weight

5) Error queue

Each error status of the instrument corresponds to an entry in the error queue, which contains a specific error message text that can be viewed through the error log or queried through the program command: SYSTem:ERRor[:NEXT]? or SYSTem:ERRor:ALL?. If there is no error in the error queue, the query returns 0, "No error".

The error queue should be queried in the controller service request handler because a more accurate description of the cause of the error can be obtained than in the status register. Especially in the test phase of the controller program, the error queue should be frequently queried to clarify the error command record sent by the controller to the instrument.

2.1.5.5 Reset Status Reporting System

Commands and events for the reset status reporting system are listed below. In addition to the commands *RST and SYSTem:PRESet, other commands will not change the function settings of the instrument. Similarly, DCL will not change the set state of the instrument. Details are shown in the table below:

Event	Power ON/OFF (Powered status cleared)		DCL, SDC (Instrument cleared,	*RST or SYSTem: PRESet	STATus: PRESet	*CLS
	0	1	instrument selected to be cleared)			
Clear STB, ESR	_	Yes	_	_	—	Yes
Clear SRE, ESE	—	Yes	_	-	—	—
Clear PPE	—	Yes	_	_	—	—
Clears the event part of the register	_	Yes	_	_	_	Yes
Clear the enable part of the operation and question registers. Fill the enable part of other registers with 1.	_	Yes	_	_	Yes	
Fill the positive transition part with 1. Clear the negative transition part.	_	Yes	_	_	Yes	
Clear the error queue	Yes	Yes			_	Yes

Table 2.10 Reset status reporting system

2.2 Instrument Program Port and Configuration

Clear the output buffer	Yes	Yes	Yes	_	_	_
Clear the command processing and input buffers	Yes	Yes	Yes	_	_	

2.1.6 Programming Precautions

1) Please initialize the instrument status before changing settings

When setting the instrument remotely, first initialize the instrument status (for example, send "*RST"), and then implement the required status setting.

2) Command sequence

In general, setting commands and query commands should be sent separately. Otherwise, the returned value of query commands will change with the current order of instrument operation.

3) Fault response

Service requests can only be initiated by the instrument. The controller program in the test system should guide the instrument to initiate service request actively when there is an error, and then enter corresponding interrupt service program for processing.

4) Error Queue

Each time the controller program processes a service request, it should query the error queue of the instrument instead of the status register for a more precise cause of the error. Especially in the test phase of the controller program, the error queue should be frequently queried to obtain the error command sent by the controller to the instrument.

2.2 Instrument Program Port and Configuration

2.2.1 USB

The USB program control system uses USBTMC to control the 87234.

The USBTMC interface does not require user configuration.

Notice

Use of USB programmable interface

Before programming with this instrument, it is necessary to install VISA library in the host computer.

2.3 I/O library

2.3.1 Overview of I/O Library

I/O library is a pre-written software library for instruments, known as instrument driver. As a software between the computer and the instrument hardware, it consists of the function library, utility program, tool kit, etc. It is a combination of a series of software code modules and corresponds to operation of a plan, such as configuring the instrument, reading from the instrument, writing to the instrument and triggering the instrument, etc. Residing in the computer, it is the bridge

2.3 I/O library

and link between the computer and the instrument. By providing a high-level modular library for convenient programming, users no longer need to learn the complex low-level programming protocol for a specific instrument. Application of instrument driver is the key to develop test and measurement applications quickly.

Functionally, a universal instrument driver generally consists of five parts: functor, interactive developer interface, programmer interface, subprogram interface and I/O interface, as shown in the figure below:

Figure 2.7 Structure model of instrument driver

The details are as follows:

1) Functor. As the main function part of the instrument driver, it may be understood as its framework program.

2) Interactive developer interface. Application development environment that supports instrument driver development is usually provided with graphical interactive developer interface for user convenience. For example, in Labwindows/CVI, the function panel is an interactive developer interface. In the function panel, each parameter of the instrument driver function is represented as a graphical control.

3) Programmer interface. It is a software interface for the application to recall instrument driver function, such as dynamic link library file.dll of instrument driver in Windows system.

4) I/O interface. It completes the actual communication between the instrument driver and the instrument. The bus specific I/O software, such as GPIB and RS-232, or the common standard I/O software used across multiple buses, VISA I/O, may be used.

5) Subprogram interface. It is a software interface for the instrument driver to access other support libraries, such as databases, FFT functions, etc. The subprogram interface is used when the instrument driver needs to recall other software modules, operating systems, program code libraries and analysis function libraries to complete its task.

2.3.2 Installation and Configuration of I/O Library

Along with the application in test field, it has gone through different development stages from traditional instrument to virtual instrument. In order to solve the interchangeability of instruments and reusability of test program in automatic test system, instrument driver has gone through different development processes. IVI (Interchangeable Virtual Instruments) driver is relative popular and common at present. Based on IVI specification, it defines a new instrument programming interface, inserts the class driver and VPP architecture onto the VISA to make the test application and instrument hardware completely independent, adds such unique functions as instrument simulation, range sensing and status cache, improves the operation efficiency of the system, and

2.4. Zeroing realizes instrument exchange.

There are two types of IVI driver: IVI-C and IVI-COM, where the latter adopts the form of COM API based on the component object model (COM) of Microsoft, and the former adopts the form of C API based on ANSI C. Both types are designed according to the instrument class defined in the IVI specification and have the same application development environment, including Visual Studio, Visual Basic, Keysight VEE, LabVIEW, CVI/LabWindows, etc.

Tips

Port configuration and IO library installation

Before using the computer to control the 87234, please make sure you have the necessary ports and I/O libraries installed and configured correctly.

Tips

Use of I/O library

The driver function panel, help document and driver function examples will be installed automatically when installing the attached IVI-COM/C driver installation package, so as to facilitate users to develop integrated program functions.

2.4. Zeroing

Zeroing is used to deduct channel noise. When should zeroing be carried out? It is recommended that the 87234 be zeroed in the following cases:

- > When the temperature change exceeds 5°C;
- Shutdown and reboot;
- After 24 hours;
- Before measuring the low-power signal. For example, when measuring a signal 10dB higher than the minimum power specified in the 87234.

Related program control commands:

CALibration:ZERO:AUTO

CALibration:ZERO:TYPE

2.4.1 Internal zeroing

The 87234 can be internally zeroed through the instrument switch control, so there is no need to disconnect the power meter from the device under test or turn off the output signal of the device under test during use, which can speed up the measurement, reduce connector wear, and lower the measurement uncertainty.

For example, if configured for internal zeroing and zeroing is initiated once:

CALibration:ZERO:TYPE INT

CAL:ZERO:AUTO ONCE

For example, if configured to "Allow auto-zero" status:

CAL:ZERO:AUTO ON

For example, if configured to "Disable auto-zero" status:

CAL:ZERO:AUTO OFF

2.4.2 External zeroing

In the average mode, signals as low as -45dBm can be measured, when the output of the device under test needs to be turned off and external zeroing is performed.

For example, zeroing:

CALibration:ZERO:TYPE EXT

CAL:ZERO:AUTO ONCE

2.5 Performing Measurements

The measurement can be configured as absolute power measurement, differential power measurement, ratio power measurement, relative power measurement, etc. For details, refer to "3.3.3 Measurement Subsystem Commands".

2.6 Using Frequency Response Offset Table

\succ	Overview	<u></u> 31
\succ	Enter Frequency Offset Table	<u></u> 32
\succ	Select Frequency Offset Table	<u></u> 32
\succ	Enable Frequency Offset Table	<u></u> 32
\succ	Measurement Applications	<u></u> 32
\succ	Specific Applications	33

How to use the frequency response offset (hereinafter referred to as frequency offset) table? The frequency offset table is used to compensate the frequency response in the process of measurement establishment.

2.6.1 Overview

Enable or disable the frequency offset table with [SENSe[1]:]CORRection:CSET2:STATe. When enabled, the frequency offset table provides a quick way to compensate for the frequency response in the test system. It should be noted that when enabled, the frequency offset is an "additional" frequency response to 87234, that is, the inherent frequency response of the 87234 (stored in the EEPROM of the 87234) is also taken into account. The 87234 can store up to 10 frequency offset tables, each with up to 80 frequency points.

How to use the frequency offset table:

- a) Enter Frequency Offset Table
- b) Select Frequency Offset Table
- c) Enable Frequency Offset Table
- d) Measurement Applications

a) Entry steps

- Enter the frequency list: MEMory:TABle:FREQuency <frequency 1>{, <frequency i>}. such as 50 MHz, 1 GHz, 10 GHz, 40 GHz;
- Enter the offset factor corresponding to the frequency list: MEMory:TABle:GAIN <factor 1>{, <factor i>}. For example, 100, 98.8, 101.2, and 110.8 correspond to the offset factors of 50 MHz, 1 GHz, 10 GHz and 40 GHz, respectively;
- Rename the frequency offset table if necessary: MEMory:TABLe:MOVE <original name>, <target name>. For example "User_3", "MyFdo0"

b) Enumerate the name of the frequency offset table: MEMory:CATalog:TABLe? See the description of this command for more information.

c) Rename the frequency offset table: MEMory:TABLe:MOVE <original name>, <target name>.

d) Query the data in the frequency offset table. For example, query the data in the frequency offset table with sequence number 3.

- > Query the frequency points in the frequency offset table:MEMory:TABLe3:FREQuency:POINTs?
- > Query the frequency list in the frequency offset table:MEMory:TABLe3:FREQuency?
- Query the number of factor points in the frequency offset table: MEMory:TABLe3:GAIN[:MAGNitude]:POINTs?
- > Query the factor list in the frequency offset table: MEMory:TABLe3:GAIN[:MAGNitude]?

e) Modify the data in the frequency offset table: see a).

- f) Notes
- > The frequency list is arranged in ascending order;
- > The effective suffix of the frequency list is Hz, kHz, MHz and GHz. Hz by default;
- > Ensure that the frequency list is within the effective frequency range of the 87234;
- > The name of the frequency offset table is up to 12 bytes and no spaces are allowed.

2.6.3 Select Frequency Offset Table

[SENSe[1]:]CORRection:CSET2[:SELect] <frequency offset table name>, e.g. "User_3"

2.6.4 Enable Frequency Offset Table

[SENSe[1]:]CORRection:CSET2:STATe ON

2.6.5 Measurement Applications

- > ABOR
- CONF:POW:AC DEF,1,(@1)
- SENS:CORR:CSET2:SEL "MyFdo0"
- SENS:CORR:CSET2:STAT ON
- SENS:FREQ 5GHz
- > INIT1
- ➢ FETC?

2.6.6 Specific Applications

a) Suppose the frequency list of frequency offset table is: 500MHz, 1GHz, 11GHz. The list of offset factors is: 100, 10, 10. Let the signal frequency be Freq and the calculated offset factor be Gain.

b) If Freq is outside the range of the frequency offset table, the frequency bias value of the highest or lowest frequency point in the frequency offset table is used. For example, for 18 GHz, the offset factor 102 corresponding to the maximum frequency point of 10 GHz is used. For example, for 50MHz, the offset factor 100 corresponding to the minimum frequency point of 500MHz is used.

c) If Freq is within the valid range of the frequency list, but between two frequencies (Freq1, Freq2), such as 5 GHz, the offset factor is obtained using two-point linear interpolation, and the offset factors corresponding to Freq1 and Freq2 are set to Gain1 and Gain2, respectively. Gain is calculated to be 50 by the following equation.

$$Gain = Gain1 + \frac{Freq - Freq1}{Freq2 - Freq1} \times (Gain2 - Gain1)$$

d) If the power before using the frequency offset table is 1.000mW (noted as Pwr0), and the final displayed power is Pwr, then Pwr = Pwr0/Gain/100 = 2.000mW.

2.7 Setting Display Resolution

Related program control commands:

DISPlay[:WINDow[1]|2][:NUMeric[1]|2]:RESolution <resolution>

< Resolution> ranges from 1 to 4.

For linear power display, <resolution> represents the number of valid digits displayed; for logarithmic power display, <resolution> represents the number of digits after the decimal point.

2.8 Setting Average

2.8.1 Measurement Average

The 87234 memory has a digital filter for average power readings. The average times ranges from 1 to 1024. If the average state is turned on, the measurement time will be increased.

Set to auto-average state, that is, set different averaging times according to different power level and display resolution. Generally, the lower the power, the greater the average times; the higher the resolution, the larger the average times.

Related program control commands:

[SENSe[1]:]AVERage[:STATe] <switch> Set average switch

For example, turn on the measurement average switch:

SENS:AVER 1

Turn off the Measurement Average.

AVER 0

[SENSe[1]:]AVERage:COUNt:AUTO <switch> Set auto-average switch

[SENSe[1]:]AVERage:COUNt <average times> Set average times

2.8.2 Video Average

Video average, also known as trace average, is used to reduce the effect of noise on the traces. The average times ranges from 1 to 1024. If the video average state is turned on, the measurement time

Related program control commands:

[SENSe[1]:]AVERage2[:STATe] <average switch>

Set average switch

For example, turn on the video average switch:

SENS:AVER2 1

Turn on the Video Average:

AVER2 0

2.9 Setting Offset

The 87234 can compensate for signal attenuation or gain in test equipment (e.g., compensate for a 20 dB attenuator).

Related program control commands:

[SENSe[1]:]CORRection:GAIN2	<offset value=""></offset>	Set channel offset value

[SENSe[1]:]CORRection:GAIN2:STATe <switch> Set channel offset switch

For example, set the channel offset to 3dB.

SENS:CORR:GAIN2 3

2.10 Setting Measurement Limits

Verify that the measured power is not outside the given range by setting the measurement limits.

Related program control commands:

:CALCulate[1] 2 3 4:LIMit:LOWer[:DATA] <lower line<="" th=""><th>mit> Set lower limit</th></lower>	mit> Set lower limit
:CALCulate[1] 2 3 4:LIMit:UPPer[:DATA] <upper lir<="" td=""><td>nit> Set upper limit</td></upper>	nit> Set upper limit
:CALCulate[1] 2 3 4:LIMit:STATe <switch></switch>	Set limit detection switch
:CALCulate[1] 2 3 4:LIMit:FAIL?	Query whether the limit is exceeded
:CALCulate[1] 2 3 4:LIMit:FCOunt? exceeded (FCO)	Number of times to query whether the limit is
:CALCulate[1] 2 3 4:LIMit:CLEar[:IMMediate]	Clear the failure count (FCO).

2.11 Status Report

The status report is used to detect the error information, operation status, question status, etc. of the power. The status report adopts the principle of step-by-step reporting, such as calibration operation is reported to operation status, and operation status is reported to status word.

For example, query whether the instrument is being calibrated, whether the instrument is being finished calibrating, whether there is an error in zero calibration, whether the instrument is connected to 87234, whether zero calibration is required, and whether the measurement is out of range, etc. The following is a description of "querying whether the instrument is calibrating Channel A".

Bit 1 in the register group of STATus:OPERation:CALibrating indicates the calibration status of Channel A.

Set the event occurrence of the calibration operation to detect the event when there is a transition from uncalibrated (state 0) to calibrated (state 1), i.e., set the positive transition filter to 1.

2.12 Storing/Recalling

STAT:OPER:CAL:PTR 2 (Configure the calibration event detection for Channel A to be from 0 to 1) Note 1

Report calibration operation events to its higher-level operation status register. That is, the calibration status bit (bit 0) of the STATus:OPERation register group.

STAT:OPER:CAL:ENAB 2 (The parameter can be 4, or 6 if it is necessary to report events for Channel B). Note 1

Similarly, if it is necessary to further report the operation status to bit 7 of the "status word", set the corresponding bit (bit 0) of the operation positive transition filter and the corresponding bit (bit 0) of the enable register.

STAT:OPER:CAL:PTR 1 (Configure the calibration event detection to be from 0 to 1)

STAT:OPER:ENAB 1 (The parameter can be 2048, or 2049 if the lower detection event needs to be reported).

At this point, the configuration is complete, and the next step is to query whether Channel A is being calibrated.

Method 1: Query bit 1 of the calibration operation condition register. If it returns non-zero, it indicates that it is being calibrated.

STAT:OPER:CAL:COND?

Method 2: Query bit 0 of the operation condition register. If it returns non-zero, it indicates that it is being calibrated.

STAT:OPER:COND?

Method 3: Query bit 7 of the status word. If it returns non-zero, it indicates that it is being calibrated.

*STB?

Note 1: If it is necessary to query whether one of the two channels is being calibrated, change parameter 2 to 6 (bit 1 and bit 2 indicate Channel A and Channel B, respectively).

2.12 Storing/Recalling

To reduce repetitive setup processes, the instrument can store 10 types of configuration data into non-volatile memory. Error list, program-controlled address (such as IP address, instrument string number), frequency response offset table, zero calibration information, etc. are not stored in this configuration. Except for the error list, which is not stored, everything else is stored in the hard configuration file and does not change with user calls.

Related program control commands:

*SAV <NRf>

*RCL <NRf>

<NRf> ranges from 1 to 10.

3. Program Control Commands 3.1 Description of Commands

3. Program Control Commands

3.1 Description of Commands

This section provides detailed command reference information for remote control, including:

- Complete syntax format and parameter list;
- Syntax diagram for non-standard SCPI;
- > Detailed function description and related command description;
- Supported command formats (settings or queries);
- > Parameter description, including: data type, value range and default value (unit);
- Key path;
- Model of instrument in the same class of instrument that is compatible with the command. If not specified, it indicates that the current command only applies to this series.
- Other instructions.

The sections of common commands and instrument subsystem commands first list the order of command items to make convenient for users to query.

For remote control, the following table describes the command suffixes:

Suffixes	Value range	Description
<ch></ch>	11	Channel
<m></m>	14	Measure
<t></t>	110	Frequency response offset table

Table 3.1 Description of command suffixes

3.2 General Commands(IEEE488.2 Commands)

Common commands are used to control instrument status registers, status reports, synchronization, data storage and other common functions. The use and function of common commands apply to different instruments. All common commands may be identified by the first "*" in the command word, and are defined in detail in IEEE488.2.

IEEE488.2 common command is interpreted and explained below.

Tips

Command use:

Unless otherwise specified, commands may be used for setting or query.

If a command is used only for setting or querying, or to start an event, the command description will be explained separately.

*CLS

Function: Clear the instrument status data structure, including SCPI registers (such as question status, operation status, etc.), standard event registers, status words, and error/event queues.

Query:	Not supported	
Setting:	*CLS	
Example:	*CLS Clear t	he instrument status
Error message:	None	
Reset state:	None	
*DDT		
Function:	Query or set the operation in response to *TRG	general command.

Note: The 87234 does not support this command at the moment. This command is used for expansion.

Query: *DDT?

- Setting: *DDT <Arbitrary data block> | <string> Arbitrary data block is of the form: #nN<action> The string will be of the form "<action>"
 - 1) Action has the following forms:
- FETC? FETC1? FETC2? *TRG TRIG1 TRIG2 (for dual-channel power Meter only) 2) In arbitrary data block, the first value n after # represents the number of bits of the data length, and the next value represents the length of the data block. Example: #15FETC? -- n = 1, N = 5 (5 bytes in total for FETC?) Example: *DDT? Query the operation behavior of the instrument when it receives the *TRG command. *DDT #206FETCh? *DDT "FETCh?" *DDT "TRIG1;FETC1" Error None message:

Reset None state:

*ESE

Function:Query or set the standard event status enable register. 0 for disable, and 1 for enable.Query:*ESE?

3.2 General Commands(IEEE488.2 Commands)

Enable 4+8+16+32 corresponding bits.

 Setting:
 *ESE <NRf>

 NRf denotes the numerical value, a multiple of 2. See Table 3.2 for bit mapping.

 Example:
 *ESE?

 Query the current setting of this register. The return format is <NR1>, 0-255.

*ESE 60

Table 3.2 Standard event bit mapping

Bit	value	Description
0	1	Operation completed
1	2	Unused
2	4	Query error
3	8	Device-related errors
4	16	Execution error
5	32	Command error
6	64	Unused
7	128	Unused

*ESR?

Function: Query the value of the standard event state register and clear the register. Refer to Table 3.2

Query:	*ESR?	
Setting:	Not supported	
Example:	*ESR?	Query the value of the standard event state register and clear it.
Error message:	None	
Reset state:	None	
*IDN?		
Function:	Query the identification string of 87234	

i unction.	
	Related program control commands ":SYSTem:IDN", ":SYSTem:IDN:AUTO"
	If ":SYSTem:IDN:AUTO" is set to "ON", *IDN? returns the user string defined by ":SYSTem:IDN", otherwise returns the string preset by the 87234.
Query:	*IDN?
Setting:	Not supported
Example:	*IDN?
Error message:	None
Reset state:	None
*OPC	

Function: When all waiting operations are completed, set the operation end bit in the standard event state register.

3. Program C	ontrol Commands	
	Commands(IEEE488.2 Commands)	
Query:	*OPC?	
Setting:	*OPC	
Example:	*OPC?	Return 1 if the waiting operation completes, otherwise it waits.
Error message:	None	
Reset state:	None	
*ESE?		
Function:	Query the instrument option configurat	ion.
Query:	*ESE?	
Setting:	Not supported	
Error message:	None	
Reset state:	None	
*RCL		
Function:	Call the 87234 status in the specified st	orage call register.
Query:	Not supported	
Setting:	*RCL <nrf></nrf>	
	The range is from 1 to 10	
Example:	*RCL 8	
Error message:	If the registers are not located from 1 to	o 10, it prompts "-222, "Data out of range"".
Reset state:	None	
*RST		
Function:	To reset 87234, please refer to SYSTem	:PRESet.
Query:	Not supported	
Setting:	*RST	
*SAV		
Function:	Store the instrument status into the spe	ecified register.
Query:	Not supported	
Setting:	*SAV <nrf></nrf>	
	The range is from 1 to 10	
Example:	*SAV 9	
Error message:	If the registers are not located from 1 to	o 10, it prompts "-222, "Data out of range"".
Reset state:	None	
*SRE		

3.2 General Commands(IEEE488.2 Commands) Function: Query or set the service request register 0 for disable, and 1 for enable. Query: *SRE? Setting: *SRE <NRf> NRf denotes the numerical value, a multiple of 2. See Table 3.3 for bit mapping. Example: *SRE? Query the current setting of this register. The return format is <NR1>, 0-255. *SRE 188 Set bits 2, 3, 4, 5 and 7 respectively (4+8+16+32+128).

Table 3.3 Service request register bit mapping

Bit	value	Description
0	1	Unused
1	2	Device information
2	4	Error/event queue
3	8	Question status
4	16	Information reception
5	32	Event status bit
6	64	Must be 0
7	128	Operation status

*STB?

Function:	Query the status word.
Query:	*STB?
Setting:	Not supported
Example:	*STB?
Error	None
message:	
Reset state:	None

Bit mapping is as follows:

Table 3.4 Status word

Bit	value	Description
0	1	Unused
1	2	Device information
2	4	Error/event queue
3	8	Question status
4	16	Information reception
5	32	Event status bit
6	64	Service request
7	128	Operation status

3.3 Instrument Subsystem Command *TRG

Function: Query: Setting: Example: Error message: Reset state:	Trigger all channels in Wait for Trigger. Not supported *TRG *TRG If the trigger source is not BUS, it prom None	The function of *TRG can be changed with *DDT. pts "-211, "Trigger ignored"".
*TST?		
Function:	Execute self-test with longer self-test t	ime.
Query:	*TST?	
Setting:	Not supported	
Example:	*TST?	Returning 0 means pass, and 1 means fail.
Error message:	None	
Reset state:	None	
*WAI		
Function:	Place 87234 in a wait state until either of All waiting operations have been compl Device clear command received Restart.	•
Query:	Not supported	
Setting:	*WAI	
Example:	*WAI	
Error message:	None	
Reset state:	None	
3.3 Instr	ument Subsystem Command	

This section details the subsystem commands of the 87234.

	Calculation Subsystem Command (CALCulate)	<u></u> 43
•	Calibration Sub-system Command (CALibration)	48
•	Measurement Subsystem Command (CONFigure/FETCh/READ/MEASure)	<u></u> 50
•	Display Subsystem Command (DISPlay)	<u></u> 61
•	Format Subsystem Command (FORMat)	<u></u> 62
•	Memory Subsystem Command (MEMory/MMEMory)	62
•	Statistics Subsystem Command (PSTatistic)	67
•	Sensor Subsystem Command (SENSe)	<u></u> 76
•	Status Subsystem Command (STATus)	<u></u> 97

3.3 Instrument Subsystem Command

•	System Subsystem Command (SYSTem)	<u></u> 126
•	Trace Subsystem Command (TRACe)	<u></u> 139
•	Trigger Subsystem Command (INITiate/ TRIGger)	<u></u> 145
•	Unit Subsystem Command (UNIT)	<u></u> 146
•	Service Subsystem Command (SERVice)	<u></u> 153

3.3.1 Calculation Subsystem Command (CALCulate)

The calculation (CALCulate) subsystem is used for subsequent data processing and shares four independent calculation function blocks that correspond to measurements as follows:

CALC1 (Measurement 1)
CALC2 (Measurement 2)
CALC3 (Measurement 3)
CALC4 (Measurement 4)

Figure 3.1 Correspondence between CALC and measurement

Both sensing (SENSe) subsystems can be used as inputs to the calculation subsystem (FEED), and the calculation diagram is as follows:

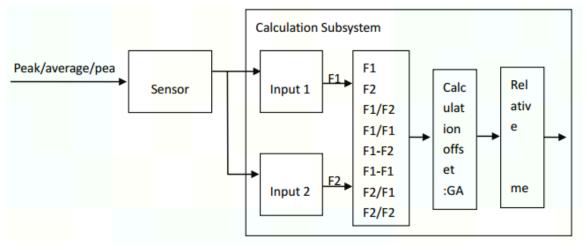


Figure 3.2 Calculation diagram

The calculation offset and relative measurement are calculated when the switch is turned on.

Commands include:

:CALCulate[1]|2|3|4:FEED[1]|2

Function: Query or set the measurement mode. The CALC:MATH:EXPR command is used to determine it from which channel.

The meaning of the suffixes in CALC: 1 for Measurement 1, 2 for Measurement 2, 3 for Measurement 3, and 4 for Measurement 4. The same below.

Query: :CALCulate[1]|2|3|4:FEED[1]|2?

Setting: :CALCulate[1]|2|3|4:FEED[1]|2 <string>

ParaMeter in the form of "POW:PEAK", "POW:PTAV", "POW:AVER", "POW:MIN"

Alternatively, it can be followed by ON SWEEP[1]|2|3|4 to indicate which measurement gate it is. For example, "POW:AVER ON SWEEP3" means the average power in measurement gate 3. If ON SWEEP[1]|2|3|4 is not specified, the measurement gate remains unchanged.

Input 2 (FEED2) is used only for ratio measurements and difference measurements.

Example:	CALC2:FEED?	Query the measurement mode of Input 1 of Measurement 2.
	CALC:FEED2 "POW:AVER ON SWEEP3"	Set Input 2 of Measurement 1 to the average power in measurement gate 3.

Limit:

Error If the mode contains ON SWEEP[1]|2|3|4, but the trigger source is not EXT or INT, it prompts "-221, "Settings conflict"".

:CALCulate[1]|2|3|4:GAIN[:MAGNitude]

- Function: Query or set the calculation offset value of the specified measurement, in DB and in the range of -100 to 100. After successful setup, the calculation offset switch for this measurement is automatically turned on. The related command is :CALCulate[1]|2|3|4:GAIN:STATe, which is used to set or query the calculation offset switch.
- **Query:** :CALCulate[1]|2|3|4:GAIN[:MAGNitude]? [MIN|MAX]
- Setting: :CALCulate[1]|2|3|4:GAIN[:MAGNitude] <numeric data> The form of <numeric data>: DEF, MIN, MAX, and NRf, where DEF is only used for setting. DEF means 0dB, MIN means -100dB, and MAX means 100dB
- Example:
 CALC:GAIN?
 Query the calculation offset of Measurement 1.

 CALC2:GAIN? MIN
 Query the minimum value of the settable calculation offset of Measurement 2.

 CALC3:GAIN MAX
 Set the calculation offset of Measurement 3 to the maximum value.

 CALC4:GAIN 18
 Set the calculation offset of measurement 4 to 18 dB.

 Reset
 Set to 0 (DEF).

state:

:CALCulate[1]|2|3|4:GAIN:STATe

- **Function:** Query or set the switch state of the calculation offset in the specified measurement. The related command is :CALCulate[1]]2|3|4:GAIN[:MAGNitude], which is used to set or query the operation value.
- Query: :CALCulate[1]|2|3|4:GAIN:STATe?
- Setting: :CALCulate[1]|2|3|4:GAIN:STATe <Boolean data> Valid forms of <Boolean data> are: 0, OFF, 1, ON

 Example:
 CALC:GAIN:STAT?
 Query the calculation offset switch state of Measurement 1.

 CALC2:GAIN:STAT ON
 Enable the calculation offset of Measurement 2.

 CALC3:GAIN:STAT 0
 Disable the calculation offset of Measurement 3.

 Reset
 Off

state:

:CALCulate[1]|2|3|4:LIMit:CLEar:AUTO

- **Function:** Control when the limit FCO (failure count) is cleared.
- Query: :CALCulate[1]]2|3|4:LIMit:CLEar:AUTO?

3.3 Instrument Subsystem Command For the ONCE state, return 1 if no measurement is not started, otherwise return 0 For the OFF state, always return 0 For the ON state, return 1 if the measurement is started, otherwise return 0 Setting: :CALCulate[1][2]3[4:LIMit:CLEar:AUTO <Boolean data>[ONCE]2 Valid forms of <Boolean data> are: 0, OFF, 1, ON. For "ON", the FCO is set to 0 when the following operations are performed: Initialize with the INITiate[:IMMediate] command: Initialize with the INITiate: CONTinuous ON command: Measure with the MEASure? command; Read the measurement with the READ? command. For "OFF", FCO is not cleared. For "ONCE" or 2, it is only cleared at the first initialization and then accrued when a limit detection failure is encountered. CALC1:LIM:CLE:AUTO? Query FCO clear state of Measurement 1. Example: CALC2:LIM:CLE:AUTO ONCE Set the FCO for clearing Measurement 2 on the first initialization. Reset Set to ON. state: :CALCulate[1][2]3]4:LIMit:CLEar[:IMMediate] **Function:** Clear the FCO (failure count) of the specified measurement, which can be queried by CALCulate[1][2]3]4:LIMit:FCOunt?. Query: Not supported

Setting: :CALCulate[1]|2|3|4:LIMit:CLEar[:IMMediate]

Example: :CALC:LIM:CLE Clear the failure count of Measurement 1.

:CALCulate[1]]2|3|4:LIMit:FAIL?

Function: Query whether the specified measurement exceeds the limit. 1 means Yes, 0 means No.

- :CALCulate[1][2]3]4:LIMit:FAIL? Query:
- Setting: Not supported
- **Example:** :CALC:LIM:FAIL?

Query the detection state of Measurement 1.

:CALCulate[1]|2|3|4:LIMit:FCOunt?

Function: Query the limit detection failure count (FCO) of the specified measurement. The FCO is cleared in the following cases: a) Reset

- b) CALCulate[1][2]3]4:LIMit:CLEar:IMMediate
- c) CALCulate[1][2]3]4:LIMit:CLEar:AUTO ON
- Query: Query: :CALCulate[1]|2|3|4:LIMit:FCOunt?
- Setting: Not supported
- :CALC:LIM:FCO? Example:

Query the detection failure count of Measurement 1.

:CALCulate[1][2]3]4:LIMit:LOWer[:DATA]

Function: Query or set the lower limit of the specified measurement limit.

Query: :CALCulate[1]]2[3]4:LIMit:LOWer[:DATA]? [MIN|MAX]

Setting: :CALCulate[1]|2|3|4:LIMit:LOWer[:DATA] <numeric data>

The form of <numeric data>: DEF, MIN, MAX, and NRf, where DEF is only used for setting.

If the currently set lower limit value is more than or equal to the upper limit value, the upper limit value is automatically adjusted depending on the unit, as shown in Table 3.7.

Example: CALC:LIM:LOW? CALC4:LIM:LOW 0.2 Query the lower limit of Measurement 1. According to the display unit of measurement, set the lower limit of measurement 4 as: 0.2dBm at dBm 200mW at W 0.2dB at dB 0.2% at %.

Reset All measurements are set to -90dBm or -90dB. **state:**

Measurement	Measurement type	CALC:REL:STAT OFF		CALC:REL:STAT ON	
mode		Linear	Logarithm	Linear	Logarithm
Single	Peak, average	Watt	dBm	%	dB
channel	Peak-to-average ratio	%	dB	%	dB
Ratio	Average, peak, peak, peak-to-average ratio	%	dB	%	dB
Delta	Peak, average	Watt	dBm	%	dB
	Peak-to-average ratio	%	dB	%	dB

Table 3.5 Unit of measurement

Table 3.6 Limit range

	Watt	dBm	%	dB
DEF	1pW	-90	100p%	-120
MIN	1aW	-150	100a%	-180
MAX	1XW	200	100X%	180

Table 3.7 Limit range adjustment

	Upper limit value				
value	Watt	dBm	%	dB	
nLow	$nLow \times 10^{0.001}$	<i>nLow</i> +0.01	$nLow \times 10^{0.001}$	<i>nLow</i> +0.01	

:CALCulate[1]|2|3|4:LIMit:STATe

Function: Query or set the specified measurement limit detection switch.

Query: :CALCulate[1]|2|3|4:LIMit:STATe?

Setting: :CALCulate[1]|2|3|4:LIMit:STATe <Boolean data>

Valid forms of <Boolean data> are: 0, OFF, 1, ON

Example: CALC:LIM:STAT?

CALC2:LIM:STAT ON

Enable the limit detection of Measurement 2.

Measurement 1.

Query the limit detection switch state of

3.3 Instrument Subsystem Command

CALC3:LIM:STAT 0

Disable the limit detection of Measurement 3.

Limit: When the [SENSe[1]:]MRATe command is set to FAST mode, the limit measurement is disabled, but the setting is allowed, and the setting takes effect after exiting this measurement mode.

Error

message:

Reset Disable the measurement limit detection.

state:

:CALCulate[1]|2|3|4:LIMit:UPPer[:DATA]

- **Function:** Query or set the upper limit of the specified measurement limit. Refer to CALCulate[1]|2|3|4:LIMit:LOWer[:DATA]
- Query: :CALCulate[1]]2|3|4:LIMit:UPPer[:DATA]? [MIN|MAX]
- Setting: :CALCulate[1]|2|3|4:LIMit:UPPer[:DATA] <numeric data> The form of <numeric data>: DEF, MIN, MAX, and NRf, where DEF is only used for setting. If the currently set upper limit value is less than or equal to the lower limit value, the lower limit value is automatically adjusted depending on the unit, as shown in Table 3.9.

Example: CALC:LIM:UPP? CALC4:LIM:UPP 8 Query the lower limit of Measurement 1.

According to the display unit of measurement, set the upper limit of measurement 4 as: 8dBm at dBm 8W at W 8dB at dB 8% at %.

Reset All measurements are set to 90dBm or 90dB.

state:

	Watt	dBm	%	dB
DEF	1MW	90	100M%	60
MIN	1aW	-150	100a%	-180
MAX	1XW	200	100X%	180

Table 3.9 Limit range adjustment

		Lower limit value				
V	alue	Watt	dBm	%	dB	
n	nUpp	<i>nUpp</i> / 10 ^{0.001}	<i>nUpp</i> – 0.01	<i>nUpp</i> / 10 ^{0.001}	<i>nUpp</i> – 0.01	

:CALCulate[1]|2|3|4:MATH[:EXPRession]

Function: Query or set the expression of the specified measurement: single channel, difference and ratio

Query: :CALCulate[1]|2|3|4:MATH[:EXPRession]?

Setting: :CALCulate[1]|2|3|4:MATH[:EXPRession] <string> The form of string is as follows: Example:

3.3 Instrument Subsystem Command

CALC1:MATH?

For a single-channel power meter, such as the 87234: "(SENS1)", "(SENS1-SENS1)", "(SENS1/SENS1)" For a dual-channel power meter, such as the 2438: "(SENS1)", "(SENS2)", "(SENS1-SENS1)", "(SENS2-SENS2)", "(SENS1-SENS2)", "(SENS2-SENS1)", "(SENS1/SENS1)", "(SENS2/SENS2)", "(SENS1/SENS2)", "(SENS2/SENS1)",

> Query the measurement expression of Measurement 1.

CALC2:MATH "(SENS1/SENS1)"

Set the expression of Measurement 2 to the Channel A/B ratio measurement.

ResetFor a single channel power meter, such as the 87234, all measurements are set tostate:Channel A ("(SENS1)").

For a dual-channel power meter, such as the 2438, Measurement 1 is A and Measurement 2 is B.

:CALCulate[1]|2|3|4:MATH[:EXPRession]:CATalogue?

Function: Enumerate all measurement expressions, separated by commas. For a single-channel power meter, the string is: "(SENS1)", "(SENS1-SENS1)", "(SENS1/SENS1)" For a dual-channel power meter, the string is: "(SENS1)", "(SENS2)", "(SENS1/SENS2)", "(SENS2/SENS1)", "(SENS1-SENS2)", "(SENS2-SENS1)""(SENS1-SENS1)", "(SENS2-SENS2)", "(SENS1/SENS1)", "(SENS2/SENS2)"

- Query: :CALCulate[1]|2|3|4:MATH[:EXPRession]:CATalogue?
- **Setting:** Not supported

Example: CALC:MATH:CAT?

List all defined mathematical expressions.

:CALCulate[1]|2|3|4:RELative[:MAGNitude]:AUTO

Function: Set the reference value for relative measurement. In the CALCulate block, the relative value is used for the measured signal only after any mathematical computation and calculation offset are completed. This value should be set to ONCE to set the reference value for relative measurement. After setting the reference value, the command returns OFF. Set the command to ONCE to set the command CALCulate[1]]2]3]4:RELative:STATe is transformed to ON. 0|OFF does not perform any operation. 1|ON is invalid, 87234 returns an error: invalid parameter. 2|ONCE, valid parameter. Refer to the above for meaning. Query: :CALCulate[1]|2|3|4:RELative[:MAGNitude]:AUTO? :CALCulate[1]|2|3|4:RELative[:MAGNitude]:AUTO ONCE Setting: **Example:** CALC:REL:AUTO? Always return 0. CALC:REL:AUTO ONCE

Set the reference value for the relative measurement of Measurement 1.

Error If parameter 1 or ON is selected, it prompts "-224, "Illegal parameter value"". **message:**

3.3 Instrument Subsystem Command

:CALCulate[1]|2|3|4:RELative[:MAGNitude]:VALue?

Function: Query the reference value for relative measurement.

Query: :CALCulate[1]|2|3|4:RELative[:MAGNitude]:VALue?

Setting: Not supported

Example: CALC:REL:VAL?

Query the reference value for the relative measurement of Measurement 1.

:CALCulate[1]|2|3|4:RELative:STATe

Function: Query or set the relative measurement switch status. When turned the relative measurement value on, set by :CALCulate[1][2]3]4:RELative[:MAGNitude]:AUTO is applied to the measurement. :CALCulate[1]|2|3|4:RELative:STATe? Query: :CALCulate[1]|2|3|4:RELative:STATe<Boolean data> Setting: Example: CALC:REL:STAT? Return 1 when the relative measurement of Measurement 1 is ON, otherwise return 0. CALC2:REL:STAT ON Turn on the relative measurement status of Measurement 2. Disable relative measurement. Reset state:

3.3.2Calibration Sub-system Command (CALibration)

The CALibration subsystem is used to control the automatic zero bias setting and linearity adjustment of the 87234. If there is no RF signal loaded to the 87234, the zero calibration setting can be done at any time.

The numeric suffix in CALibration command indicates the measurement channel. CALibration1 and CALibration2 indicate Channel A and Channel B respectively (the 87234 series only supports Channel A.)

Commands include:

:CALibration[1][:ALL]

Function: Zeroing and calibration of the 87234. 1 indicates Channel A and can be omitted.

In which cases is zeroing and calibration required?

Temperature change exceeds 5 °C

Restart

Measure small power

every 24 hours. For example, measuring a power 10 dB higher than the minimum power of the 87234.

Query: Not supported

Setting: :CALibration[1][:ALL]

Example: CAL Zeroing and calibration

Error If there is an error in zeroing, it prompts "-231, "Data questionable;cal error"".

message: If there is an error in calibration, it prompts "-231, "Data questionable;zero error"".

:CALibration[1]:AUTO

Function: Calibration of the 87234.

Query: :CALibration[1]:AUTO?

3.3 Instrument Subsystem Command

Settin	ig:	:CALibration[1]:AUTO <boolean data=""> ONCE 2</boolean>
		Valid forms of <boolean data=""> are: 0, OFF, 1, ON.</boolean>
		For ON or 1, the 87234 performs an automatic calibration every 10 minutes.
		For 0FF or 0, auto-calibration is disabled
		For ONCE or 2: Initiate a calibration.
_		

Example: CAL1:AUTO ONCE Calibration of the 87234

Error If there is an error in calibration, it prompts "-231, "Data questionable; cal error""; **message:**

:CALibration[1]:ZERO:AUTO

Function: Zeroing of the 87234. 1 indicates Channel A and can be omitted.

Query: :CALibration[1]:ZERO:AUTO?

 Setting:
 :CALibration[1]:ZERO:AUTO
 <Boolean data>|ONCE|2

 Valid forms of <Boolean data> are: 0, OFF, 1, ON.
 For ON or 1, the 87234 enables auto-zero for instant zero drift measurements in real time. Real-time zero drift measurement is only valid for normal measurement mode.

 For 0FF or 0, auto-zero is disabled.
 For ONCE or 2: Initiate a zeroing.

 Example:
 CAL:ZERO:AUTO ONCE
 Zero Channel A of the 87234

Error If there is an error in zeroing, it prompts "-231, "Data questionable;zero error"". **message:**

:CALibration[1]:ZERO:TYPE

Function: Query or set the zeroing type.

Query: :CALibration[1]:ZERO:TYPE?

 Setting:
 :CALibration[1]:ZERO:TYPE <character data>

 Character data is defined as follows:
 INTernal or 0: Internal zeroing

 EXTernal or 1: External zeroing
 Example:

 CAL:ZERO:TYPE
 Query

 Example:
 CAL:ZERO:TYPE EXT

Query the zeroing type of the 87234 Set the zeroing of the 87234 to "external"

Reset Internal zeroing.

state:

3.3.3 Measurement Subsystem Command (CONFigure/FETCh/READ/MEASure)

Generally, unless otherwise specified, the linear power is in W, the logarithmic power is in dBm, the linear power ratio is in %, the logarithmic power ratio is in dB, and the time is in s.

If the returned value is invalid, NAN (9.91E37) is returned, as defined in IEEE 754.

The differences between the FETCh command, MEASure command, and READ command are as follows:

The FETCh command is to query the displayed value of a given measurement. The execution speed of the FETCh command is not related to the power level and generally returns immediately. The FETCh command may return intermediate results in the power measurement process rather than the actual power value.

The MEASure command starts a measurement and returns the result only after the measurement is completed. Generally, the lower the power, the longer the MEASure command takes.

The READ command completes a new measurement in the stop state, and INIT:CONT must be set to OFF.

Note: If the trigger source is INT or EXT, after entering a new INIT operation, if the trigger conditions are not met and the trigger signal has not been waited for, the effect is that the device will be hung and the programmed command will not respond. Therefore, when using the measurement subsystem command, it is important to ensure that the device captures the trigger signal.

Commands include:

:CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]

- Function: Query or set the power measurement mode of the specified measurement.
- **Query:** :CONFigure[1]|2|3|4?
- **Setting:** :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC] [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

Example: CONF? Query the power measurement configuration of Measurement 1.

CONF1 DEF, 3, (@1)

Set Measurement 1 to absolute power measurement with a resolution of 3, and source channel to A.

Error

message

- **Reset** Set to measure absolute power with a resolution of 3.
- state:

:CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence

- **Function:** Set the power measurement mode of the specified measurement as difference measurement and turn on relative measurement.
- **Query:** Not supported
- Setting: :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence [<expected value> [, <resolution> [, <source channel list>]]

Set to differential power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A - Channel A.

Example: CONF2:DIFF DEF, 3, (@1), (@1)

Set Measurement 2 to differential power measurement (Channel A - Channel A) with a resolution of 3.

Error message

:CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative

Function: Set the power measurement mode of the specified measurement as difference measurement and turn on relative measurement.

- **Query:** Not supported
- Setting: :CONFigure[1]]2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative [<expected value>[, <resolution>[, <source channel list>]]]

Set to differential power measurement, and turn on relative measurement, where both

3.3 Instrument Subsystem Command the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), (@1), indicating Channel A - Channel A. Example: CONF3:DIFF:REL DEF, 3, (@1), (@1) Set Measurement 3 to differential power measurement (Channel A - Channel A) with a resolution of 3 and relative measurement ON. Error message: Reset None state: :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio Function: Set the power measurement mode of the specified measurement as ratio measurement and turn off relative measurement. Query: Not supported :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio [<expected value>[, <resolution>[, Setting: <source channel list>]]] Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), (@1), indicating Channel A divided by Channel A. **Example:** CONF4:RAT DEF, 3, (@1), (@1) Set measurement 4 to ratio power measurement (Channel A divided by Channel A) with a resolution of 3. Error message: None Reset state: :CONFigure[1]]2|3|4[:SCALar][:POWer][:AC]:RATio:RELative Set the power measurement mode of the specified measurement as ratio measurement Function: and turn on relative measurement. Query: Not supported :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative Setting: [<expected value>[. <resolution>[, <source channel list>]]] Set to ratio power measurement, and turn on relative measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The

resolution ranges from 1 to 4; the channel list is of the form: (@1), (@1), indicating Channel A divided by Channel A. CONF:RAT:REL DEF, 3, (@1), (@1) Example: Set Measurement 1 to ratio power measurement (Channel A divided by Channel A) with a resolution of 3, and turn on relative

measurement.

Error message:

:CONFigure[1][2]3]4[:SCALar][:POWer][:AC]:RELative

Set the absolute power measurement mode of the specified measurement, and turn on Function: relative measurement.

3.3 Instrument Subsystem Command

Query: Not supported

Setting: :CONFigure[1]|2|3|4[:SCALar][:POWer][:AC]:RELative [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn on relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

Example: CONF:REL DEF, 3, (@1)

Set Measurement 1 to absolute power measurement with a resolution of 3, source channel to A, and turn on relative measurement.

Error message:

:FETCh[1]:ARRay:AMEasure:POWer?

Function: Query the peak power, average pulse power, overshoot, top power, bottom power, pulse power, etc. of a given channel pulse measurement in the same units as those displayed in the channel trace. The average pulse power can only be measured when a complete waveform can be displayed on the screen. If a parameter is invalid, 9.91e37(NAN) is returned, as below, without further ado.

Query: :FETCh[1]:ARRay:AMEasure:POWer?

The return value indicates peak power, average power, overshoot, top power, bottom power, minimum power, and pulse top fluctuation in that order.

Setting: Not supported

Example: FETC:ARR:AME:POW?

Query the automatic power measurement value of Channel 1.

Limit: Peak measurement mode; the horizontal scale (time base) must be set appropriately for the above automatic paraMeter to be measured.

:FETCh[1]:ARRay:AMEasure:STATistical?

- **Function:** Query the statistical timing, statistical count, average power, maximum power, minimum power, etc. of the given channel CCDF statistical measurement in the same units as those displayed in the channel trace.
- Query: :FETCh[1]:ARRay:AMEasure:STATistical?
- Setting: Not supported

Example: FETC:ARR:AME:STAT?

Query the automatic measurement value of power statistics of Channel 1.

Limit:

:FETCh[1]:ARRay:AMEasure:TIME?

- **Function:** Query the pulse measurement frequency, cycle, width, off time, duty cycle, rise time, fall time and edge delay of a given channel. For each automatic measurement parameter, it must be possible to display it on the screen in graphical mode in order to make a correct reading. For example, pulse frequency, period, off time and duty cycle measurements must ensure that the screen displays at least one full period, pulse width must ensure that the screen displays at least one full pulse, and rise time and fall time measurements require that they be observable and that the entire edge occupies at least 0.1 div.
- Query: :FETCh[1]:ARRay:AMEasure:TIME? The return values indicate the pulse measurement frequency, period, width, off time, duty cycle, rise time, fall time, and edge delay in that order.
- **Setting:** Not supported

None.

Example: FETC:ARR:AME:TIME? Query the time auto-measurement value of Channel 1.

Limit: Peak measurement mode; the horizontal scale (time base) must be set appropriately for the above automatic paraMeter to be measured.

Reset state:

:FETCh[1]:DROop?

Function: Query the pulse top fluctuation of the first pulse of a given channel. Its unit is determined by the following command: TRACe[1]:MEASurement:TILTed|DROop:UNIT The relevant command is: TRACe[1]:MEASurement:PULSe[1]|2-20:TILTed|DROop?

TRACe[1]:MEASurement:TILTed|DROop:UNIT

- Query: :FETCh[1]:DROop?
- **Setting:** Not supported
- **Example:** FETC:DRO? Query the pulse top fluctuation of Channel 1.
- **Limit:** Measurement mode; the horizontal scale (time base) must be set appropriately for the above paraMeter to be measured.

Reset

state:

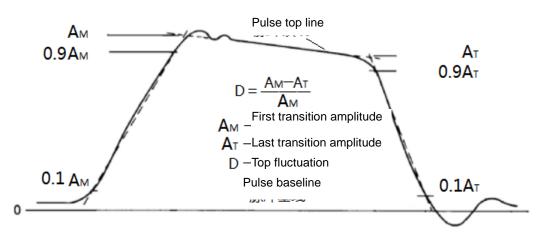


Figure 3.3 Pulse top fluctuation

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]?

- **Function:** Set the specified measurement as absolute power measurement, turn off relative measurement, and return to the measurement value displayed in the current measurement. The measurement unit is specified by UNIT[1]|2|3|4:POWer. This command does not wait for a measurement to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query: :FETCh[1]|2|3|4[:SCALar][:POWer][:AC]? [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

Setting: Not supported

Example: FETC2?

Query that Measurement 2 is the absolute

power measurement value.

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence?

- **Function:** Set the specified measurement as differential power measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]|2|3|4:POWer. This command does not wait for a measurement to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query: :FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence? [<expected value>[, <resolution>[, <source channel list>]]] Set to differential power measurement and turn off relative measurement. where both

the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the source channel list is of the form (@1), (@1), indicating Channel A - Channel A.

Setting: Not supported

Example: FETC3:DIFF? DEF, 3, (@1), (@1)

Set Measurement 3 to differential power measurement (Channel A - channel

A) with a resolution of 3, turn off relative measurement, and return the power measurement value.

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative?

- **Function:** Set the specified measurement as differential power measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]]2[3]4:POWer:RATio. This command does not wait for a measurement to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query::FETCh[1][2]3]4[:SCALar][:POWer][:AC]:DIFFerence:RELative?[<expected value>[,<resolution>[, <source channel list>]]]Set to differential power measurement, and turn on relative measurement. where both
the expected value and the resolution can be expressed as DEF, indicating no change.
The resolution ranges from 1 to 4; the source channel list is of the form
(@1), (@1), indicating Channel A Channel A.

Setting: Not supported

Example: FETC3:DIFF:REL? DEF,3,(@1), (@1)

Set Measurement 3 to differential power measurement (Channel A – Channel A) with a resolution of 3, turn on relative measurement, and return the power measurement value.

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RATio?

Function: Set the power measurement mode of the specified measurement as ratio measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]|2|3|4:POWer:RATio. This command does not wait for a measurement

3.3 Instrument Subsystem Command

- to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query: :FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RATio? [<expected value>[, <resolution>[, <source channel list>]]]

Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A divided by Channel A.

Setting: Not supported

Example: FETC4:RAT? DEF, 3, (@1), (@1)

Set measurement 4 to ratio power measurement (Channel A divided by Channel A), and turn off relative measurement, with a resolution of 3. Return the measured value.

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative?

- **Function:** Set the power measurement mode of the specified measurement as ratio measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]|2|3|4:POWer:RATio. This command does not wait for a measurement to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query: :FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A divided by Channel A.

Setting: Not supported

Example: FETC4:RAT:REL? DEF, 3, (@1), (@1)

Set measurement 4 to ratio power measurement (Channel A divided by Channel A), and turn on relative measurement, with a resolution of 3. Return the measured value

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RELative?

- **Function:** Set the specified measurement as absolute power measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer:RATio. This command does not wait for a measurement to be completed before returning. To get the exact measurement value, use the MEAS command.
- Query: :FETCh[1]|2|3|4[:SCALar][:POWer][:AC]:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

Setting: Not supported

Example: FETC2:REL?

Query the relative power measurement value of Measurement 2.

Error If the last measurement is invalid, it prompts -230, "Data corrupt or stale". Running the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]?

- **Function:** Set the specified measurement as absolute power measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.
- Query: :MEASure[1]|2|3|4[:SCALar][:POWer][:AC]? [<expected value>[, <resolution>[, <source channel list>]]] Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

Setting: Not supported

Example: MEAS2?

Start one measurement and return to Measurement 2 for the absolute power measurement after the measurement is completed.

Error

message:

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence?

- **Function:** Set the specified measurement as differential power measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.
- Query::MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence?[<expected</td>value>[,<resolution>[, <source channel list>]]]Set to differential power measurement and turn off relative measurement. where both
the expected value and the resolution can be expressed as DEF, indicating no change.
The resolution ranges from 1 to 4; the source channel list is of the form
(@1), (@1), indicating Channel A Channel A.

Setting: Not supported

Example: MEAS3:DIFF? DEF, 3, (@1), (@1)

Set Measurement 3 to differential power measurement (Channel A - Channel A) with a resolution of 3, turn off relative measurement, start one measurement, and return the power measurement value when the measurement is complete.

Error message:

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative?

Function: Set the specified measurement as differential power measurement, turn on relative

measurement, and return the measured value. The measurement unit is specified by UNIT[1]|2|3|4:POWer:RATio. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.

- Query:
 :MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative?
 [<expected value>[,

 <resolution>[, <source channel list>]]]
 Set to differential power measurement, and turn on relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the source channel list is of the form (@1), (@1), indicating Channel A Channel A.
- Setting: Not supported
- Example: MEAS3:DIFF:REL? DEF, 3, (@1), Set Measurement 3 to differential power (@1) measurement (Channel A - Channel A) with a resolution of 3, turn on relative measurement, start one measurement, and return the power measurement value when the measurement is

complete.

Error

message:

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio?

- **Function:** Set the power measurement mode of the specified measurement as ratio measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer:RATio. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.
- Query: :MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio? [<expected value>[, <resolution>[, <source channel list>]]]

Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A divided by Channel A.

- Setting: Not supported
- **Example:** MEAS4:RAT? DEF, 3, (@1), (@1)

Set measurement 4 to ratio power measurement (Channel A divided by

Channel A), and turn off relative measurement, with a resolution of 3. Start a measurement and return the power measurement value when the measurement is completed.

Error message:

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative?

Function: Set the power measurement mode of the specified measurement as ratio measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3]4:POWer:RATio. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.

Query: :MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A divided by Channel A.

Setting: Not supported

Example: MEAS4:RAT:REL? DEF, 3, (@1), (@1)

Set measurement 4 to ratio power measurement (Channel A divided by Channel A), and turn on relative measurement, with a resolution of 3. Start a measurement and return the power measurement value when the measurement is completed.

Error

message:

:MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RELative?

- **Function:** Set the specified measurement as absolute power measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer. Start a measurement and return the measured value when the measurement is completed. And the corresponding FETCh command returns the current measurement value, not when the measurement is completed. When composing a test system, please use the MEASure command.
- Query: :MEASure[1]|2|3|4[:SCALar][:POWer][:AC]:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1) indicating Channel A.

Setting: Not supported

Example: MEAS2:REL?

Start a measurement and return the relative power measurement of Measurement 2 when the measurement is completed.

Error

message:

:READ[1]|2|3|4[:SCALar][:POWer][:AC]?

- **Function:** Set the specified measurement as absolute power measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]]2|3|4:POWer.
- Query: :READ[1]|2|3|4[:SCALar][:POWer][:AC]? [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), indicating Channel A.

- Setting: Not supported
- **Example:** READ2? Query that Measurement 2 is the absolute power measurement value.

Error If INIT:CONT is set to ON, it prompts -213, "Init ignored".

message:

3.3 Instrument Subsystem Command :READ[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence?

Function: Set the specified measurement as differential power measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]]2|3|4:POWer.

Query: :READ[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence? [<expected value>[, <resolution>[, <source channel list>]]]

Set to differential power measurement and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the source channel list is of the form

(@1), (@1), indicating Channel A - Channel A.

Setting: Not supported

Example: READ3:DIFF? DEF, 3, (@1), (@1)

Set Measurement 3 to differential power measurement (Channel A – Channel A) with a resolution of 3, turn off relative measurement, and return the power measurement value.

Error If INIT:CONT is set to ON, it prompts -213, "Init ignored".

message:

:READ[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative?

- **Function:** Set the specified measurement as differential power measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]]2|3|4:POWer:RATio.
- Query: :READ[1]|2|3|4[:SCALar][:POWer][:AC]:DIFFerence:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to differential power measurement, and turn on relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the source channel list is of the form

(@1), (@1), indicating Channel A - Channel A.

- Setting: Not supported
- **Example:** READ3:DIFF:REL? DEF, 3, (@1), Set Measurement 3 to differential power measurement (Channel A Channel A) with a resolution of 3, turn on relative measurement, and return the power measurement value.

Error If INIT:CONT is set to ON, it prompts -213, "Init ignored".

message:

:READ[1]|2|3|4[:SCALar][:POWer][:AC]:RATio?

- **Function:** Set the power measurement mode of the specified measurement as ratio measurement, turn off relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]|2|3|4:POWer:RATio.
- Query: :READ[1]|2|3|4[:SCALar][:POWer][:AC]:RATio [<expected value>[, <resolution>[, <source channel list>]]]

Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form:

(@1), (@1), indicating Channel A divided by Channel A.

Setting: Not supported

Example: READ4:RAT? DEF, 3, (@1), (@1)

Set measurement 4 to ratio power measurement (Channel A divided by Channel A), and turn off

relative measurement, with a resolution of 3. Return the measured value.

If INIT:CONT is set to ON, it prompts -213, "Init ignored". Error message:

:READ[1]|2|3|4[:SCALar][:POWer][:AC]:RATio:RELative?

- Function: Set the power measurement mode of the specified measurement as ratio measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1][2]3[4:POWer:RATio.
- :READ[1]]2]3]4[:SCALar][:POWer][:AC]:RATio:RELative? [<expected Query: value>[. <resolution>[, <source channel list>]]] Set to ratio power measurement, where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1), (@1), indicating Channel A divided by Channel A.
- Setting: Not supported

Example:

READ4:RAT:REL? DEF, 3, (@1), (@1) Set measurement 4 to ratio power measurement (Channel A divided by Channel A), and turn on relative measurement, with a resolution of 3. Return the measured value.

Error If INIT:CONT is set to ON, it prompts -213, "Init ignored".

message:

:READ[1]|2|3|4[:SCALar][:POWer][:AC]:RELative?

- Function: Set the specified measurement as absolute power measurement, turn on relative measurement, and return the measured value. The measurement unit is specified by UNIT[1]]2|3|4:POWer:RATio.
- Query: :READ[1]]2|3|4[:SCALar][:POWer][:AC]:RELative? [<expected value>[, <resolution>[, <source channel list>]]]

Set to absolute power measurement, and turn off relative measurement. where both the expected value and the resolution can be expressed as DEF, indicating no change. The resolution ranges from 1 to 4; the channel list is of the form: (@1) indicating Channel A.

Setting: Not supported

Example: READ2:REL?

Query the relative power measurement value of Measurement 2.

Error If INIT:CONT is set to ON, it prompts -213, "Init ignored".

message:

3.3.4 Display Subsystem Command (DISPlay)

The DISPlay subsystem is used to control the display of text, graphics and traces.

Commands include:

:DISPlay[:WINDow[1]]2][:NUMeric[1]]2]:RESolution

- Query or set the display resolution of the specified measurement. WINDow1 indicates Function: the upper window, which can be omitted, and WINDow2 indicates the lower window; NUMeric1 indicates the upper measurement, which can be omitted, and NUMeric2 indicates the lower measurement.
- :DISPlay[:WINDow[1]|2][:NUMeric[1]|2]:RESolution? [MIN|MAX] Query:
- Setting: :DISPlay[:WINDow[1]|2][:NUMeric[1]|2]:RESolution <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 1 to 4.

Example: DISP:WIND2:NUM2:RES? DISP:RES 3 Query the display resolution of Measurement 4.

Set the display resolution of Measurement 1 to 3, i.e., display 3 valid digits for linear display and 2 decimal places (0.01) for logarithmic display.

Reset Resolution is 3

state:

3.3.5 Format Subsystem Command (FORMat)

The format subsystem is used to set the transmission format of the numeric data. This format system is only used for the following query commands:

FETCh?

MEASure?

READ?

:FORMat[:READings]:BORDer

Function: Query or set the transmission order of binary data: normal or byte exchange. Valid only when FORMat[:READings][:DATA] is set to REAL.

Query: :FORMat[:READings]:BORDer?

 Setting:
 :FORMat[:READings]:BORDer <character data>
Valid values for <character data> are: 0 or NORMal, 1 or SWAPped

 Example:
 FORM:BORD?
FORM:BORD SWAP
 Query the transmission order.
Set the transmission order to byte-swap.

 Reset
 Set to NORMal

state:

:FORMat[:READings][:DATA]

Function: Query or set the data transfer format: ASCii and REAL (real numbers)

Query: :FORMat[:READings][:DATA]?

 Setting:
 :FORMat[:READings][:DATA]
 <character data>

 Valid values for <character data> are: 0 or ASCii, 1 or REAL
 ASCii: Numerical data is transferred in the form of <NRf>.

 REAL: Numerical data is transferred in IEEE 754 64-bit floating point format and is 8 bytes per data.
 Query the data transmission format.

 FORM
 FORM?
 Query the data transmission format.

 FORM
 REAL
 Set the data transmission format to REAL.

state:

3.3.6 Memory Subsystem Command (MEMory/MMEMory)

:MEMory:CATalog[:ALL]?

Function: Enumerate the user configurations in the 87234, including storage call configuration, frequency response offset table (FDO), etc. The data format is: <value 1>, <value 2> {, <string>}

Where <value 1> indicates the length of bytes used by the user configuration and <value 2> indicates the length of unused bytes.

The form of each <string> is as follows:

<string i>, <type>, <length>

<string i> indicates the name of the user configuration.

 $<\!type\!>$ indicates the type of user configuration, TABL indicates frequency response offset table, and STAT indicates store call configuration.

<length> indicates the length in bytes of this configuration item.

Query: :MEMory:CATalog[:ALL]?

Setting: Not supported

Example: MEM:CAT?

Reset None

state:

:MEMory:CATalog:STATe?

Function: Enumerate the storage call configuration in the 87234.

The data format is: <value 1>, <value 2> {, <string>}

Where <value 1> indicates the length of bytes used by the user configuration and <value 2> indicates the length of unused bytes.

The form of each <string> is as follows:

<string i>, <type>, <length>

<string i> indicates the name of the user configuration.

<type> indicates the type of user configuration, and STAT indicates store call configuration.

<length> indicates the length in bytes of this configuration item.

Query: :MEMory:CATalog:STATe?

Setting: Not supported

Example: MEM:CAT:STAT?

Enumerate the storage call configuration in the 87234.

Enumerate all user configurations in the 87234.

:MEMory:CATalog:TABLe?

Function: Enumerate the frequency response offset table in the 87234.

The data format is: <value 1>, <value 2> {, <string>}

Where <value 1> indicates the length of bytes used by the user configuration and <value 2> indicates the length of unused bytes.

The form of each <string> is as follows:

<string i>, <type>, <length>

<string i> indicates the name of the user configuration.

<type> indicates the type of user configuration, and TABL indicates frequency response offset table.

<length> indicates the length in bytes of this configuration item.

Query: :MEMory:CATalog:TABLe?

Setting: Not supported

Example: MEM:CAT:TABL?

Enumerate the frequency response offset table in the 87234.

3.3 Instrument Subsystem Command :MEMory:CLEar[:NAME]

Function: Used to clear the frequency response offset table or storage call table specified in the power.

Query: Not supported

Setting: :MEMory:CLEar[:NAME] <string>

<string> indicates the name of frequency response offset table or storage call table

- **Example:** MEM:CLE "fdo0" Clear the fdo0 frequency response offset table.
- **Description:** 1) If the specified frequency response offset table is enabled, it is automatically turned off.

2) The English name of the storage call state is "State1", "State2" "State10", and the name cannot be changed. The Chinese name of the storage call state is "State 1", "State 2" "State 10", and the name cannot be changed.

3) Clear the frequency response offset table if the specified name can be found in the frequency response bias list;

4) Clear the state table if the specified name can be found in the storage call state list.

5) If there is a frequency response bias of "State1", then call MEM:CLE "State1", which will clear the frequency response offset table and state table.

6) In the program control setting, the state name of the storage call has no relationship with the language switch of the interface, i.e., the following two commands both clear the state 1 (English name is recommended). MEM:CLE "State 1"

MEM:CLE "State1"

Error If the specified name does not exist, it prompts "-224, "Illegal parameter value"" **message:**

Reset state: None

:MEMory:CLEar:TABLe[1]|2|3|4|5|6|7|8|9|10

Function: Clear the specified frequency response offset table.

- **Query:** Not supported
- Setting: :MEMory:CLEar:TABLe[1]|2|3|4|5|6|7|8|9|10

Example: MEM:CLE:TABL5

Clear the 5th frequency response offset table. (10 in total)

:MEMory:FREE[:ALL]?

Function: Query the total number of bytes unused in the user configuration space and the number of bytes used.

The return string is of the form: <unused bytes>, <used bytes>

- **Query:** :MEMory:FREE[:ALL]?
- Setting: Not supported

Example: MEM:FREE?

:MEMory:FREE:STATe?

Function: Query the total number of bytes unused in the storage call space and the number of bytes used.

The return string is of the form: <unused bytes>, <used bytes>

- Query: :MEMory:FREE:STATe?
- **Setting:** Not supported

Example: MEM:FREE:STAT?

:MEMory:FREE:TABLe?

Function: Query the total number of unused bytes and the number of bytes used in the frequency response offset table space.

The return string is of the form: <unused bytes>, <used bytes>

Query: :MEMory:FREE:TABLe?

Setting: Not supported

Example: MEM:FREE:TABL?

:MEMory:NSTates?

Function: Query the number of storage call states, and always return 10

Query: :MEMory:NSTates?

Setting: Not supported

Example: MEM:NST?

:MEMory:STATe:CATalog?

- Function: Enumerate the names of all storage call states.
- Query: :MEMory:STATe:CATalog?
- Setting: Not supported
- **Example:** MEM:STAT:CAT?

:MEMory:STATe:DEFine

Function: Query or set the name of the storage call status register.

Query::MEMory:STATe:DEFine? <string>
The string is the name of the instrument status contained in matching quotation marks.

- Setting: :MEMory:STATe:DEFine <string>, <numeric data> The definition of string is the same as that of query format; Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.
 <NRf> ranges from 1 to 10.
- Example: MEM:STAT:DEF? "State1"

to the "State1". Name the state register 8 as "MyState"

Query the state register number corresponding

MEM:STAT:DEF "MyState",8 :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:DEFine

Function: Query or set the name in the specified frequency response offset table.

- Query: :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:DEFine?
- Setting: :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:DEFine <string>
- Example:
 MEM:TABL6:DEF?
 Query the name of the 6th frequency response offset table.

 MEM:TABL8:DEF
 "fdo0"
 Name the 8th frequency response offset table as fdo0.

Error If the specified name already exists, it prompts "-257, "File name error"". **message:**

:MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:FREQuency

Function:	Query or set the frequency list in the specified frequency response offset table.		
	When setting the frequency list, the previous frequency list will be cleared and the frequency list must be sorted in ascending order.		
	The relevant command is:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:GAIN[:MAGNitude]		
Query:	:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:FREQuency?		

Setting: :MEMory:TABLe[1]]2|3|4|5|6|7|8|9|10:FREQuency <numeric data 1>{, <numeric data n>} It is necessary to ensure that this frequency list covers the frequency range of the 87234, and if the frequency of the signal under test is outside the range of this list, the value at the lowest or highest frequency will be used.

The maximum number of frequency points is 80.

The effective units of frequency are: Hz, kHz, MHz, and GHz

Example:	MEM:TABL6:FREQ?	Query the frequency list of the 6th frequency response offset table.
	MEM:TABL6:FREQ 50MHz, 40GHz	Set the frequency of the 6th frequency response offset table to 50MHz and 40GHz.

Error If the number of points in the frequency list exceeds 80, it prompts "-108, "Parameter not allowed"".

If the frequency list is not in increasing order, it prompts "-220, "Parameter error""

Reset

state:

:MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:FREQuency:POINts?

- **Function:** Query the frequency points of the frequency response offset table.
- Query: :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:FREQuency:POINts?
- Setting: Not supported

None

Example: MEM:TABL6:FREQ:POIN?

Query the frequency points of the 6th frequency response offset table.

:MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:GAIN[:MAGNitude]

Function: Query or set the amplitude gain list in the specified frequency response offset table. When setting the gain list, the previous gain list will be cleared, The related command is:MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:FREQuency
Query: :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:GAIN[:MAGNitude]?
Setting: :MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:GAIN[:MAGNitude] <numeric data >{, <numeric data >}
The maximum gain points is 80. It is in PCT, i.e. 100 means 100%

The amplitude gain ranges from 1.0e-009 to 1.0e+009, or -90dB to 90dB.

Query the gain list of the 6th frequency response offset table.

MEM:TABL6:GAIN 98, 102

MEM:TABL6:GAIN?

Set the gain list of the 6th frequency response offset table to 98% and 102%.

:MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:GAIN[:MAGNitude]:POINts?

Function: Query the amplitude gain points of the frequency response offset table.

Example:

Query: :MEMory:TABLe[1]]2|3|4|5|6|7|8|9|10:GAIN[:MAGNitude]:POINts?

Setting: Not supported

Example: MEM:TABL6:GAIN:POIN?

Query the amplitude gain points of the 6th frequency response offset table

:MEMory:TABLe:MOVE

- **Function:** Rename the specified frequency response offset table. This command requires prior knowledge of the name of the frequency response offset table to be modified. Related commands MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:DEFine It is recommended to use MEMory:TABLe[1]|2|3|4|5|6|7|8|9|10:DEFine.
- **Query:** Not supported
- Setting: :MEMory:TABLe:MOVE < string 1>, < string 2> <string 1> indicates the name of the frequency response offset table that needs to be modified

<string 2> indicates the name of the modified frequency response offset table

Example: MEM:TABL:MOVE "fdo0", "fdo1"

Error If the frequency response offset table specified by the first parameter does not exist, it prompts "-256, "File name not found""

If the frequency response offset table specified by the second parameter already exists, it prompts "-257, "File name error""

If the length of the second parameter is longer than 16 characters, it prompts "-257, "File name error""

:MEMory:TABLe:SELect

Function: Query or set the current frequency response offset table. This is different from 2434. Calibration table is supported in 2434, and this command can be used to select a calibration table.

Query: :MEMory:TABLe:SELect?

Setting: :MEMory:TABLe:SELect <string>

 Example:
 MEM:TABL:SEL?
 Return the name of the current frequency response offset table.

 MEM:TABL:SEL "fdo0"
 Set the current frequency response offset table to fdo0.

Error If the frequency response offset table specified by the parameter does not exist, it prompts "-224, "Illegal parameter value"".

3.3.7 Statistics Subsystem Command (PSTatistic)

The statistics subsystem command is used to configure the settings of the Complementary Cumulative Distribution Function (CCDF).

:PSTatistic[1]:CCDF:COUNt

- Function: Query or set the total number of statistics end. :PSTatistic[1]:CCDF:END:ACTion :PSTatistic[1]:CCDF:TIME
- **Query:** :PSTatistic[1]:CCDF:COUNt?

Setting: :PSTatistic[1]:CCDF:COUNt <NRf> <NRf> ranges from 1e+06 to 4.2e+09

Example: PST:CCDF:COUN? PST:CCDF:COUN 1e8 Query the total number of statistics end. Set the total number of statistics end to 100 M.

Limit:

Reset The default is 1e8.

state:

:PSTatistic[1]:CCDF:DATA?

Function: Query the statistical probability list of the 87234. The power range is 0dB to the maximum power. The number of elements in the list is 501, and the unit is% (for example, 18.9 means 18.9%).

The format of the returned data is <Arbitrary data block>. See Section 7.7.6 of IEEE 488.2,

#nNNN...Nddd.....ddd<LF>

| Data newline character indicating the end of the data block.

Data length (i.e., the number of bytes of d)

Number of bits of data length (i.e., the number of bits of N) The marker for the start of the data block.

For example: #42004 in <LF> n = 4 and N = 2004.

Each data element is formatted as IEEE754 32-bit floating-point data, i.e., 4 bytes.

Query: :PSTatistic[1]:CCDF:DATA?

Setting: Not supported

Example: PST:CCDF:DATA?

Query the statistical probability buffer.

Limit:

Description: The binary data block may contain a newline character (0x0A). When using VISA library, after sending this command, it is required to set VI_ATTR_TERMCHAR_EN to VI_FALSE before reading the data. Firstly read the first two bytes (#n) to determine the length of the data block that follows. Then read n bytes, calculate the total number of bytes N behind, and finally read N bytes. N bytes are the real trace data.

Error

message: If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

Reset state: None

:PSTatistic[1]:CCDF:DATA:MAX

Function: Query or set the maximum value of the X-axis of the statistical trace.

Query: :PSTatistic[1]:CCDF:DATA:MAX?

Setting: :PSTatistic[1]:CCDF:DATA:MAX <NRf>

<NRf> ranges from 1 to 50 dB

Example: PST:CCDF:DATA:MAX?

PST:CCDF:DATA:MAX 15

Limit:

Reset 50

state:

:PSTatistic[1]:CCDF:DECades

Function: Query or set the "decimal number" of the statistical vertical axis. For example, when set to 6, the range of statistical probability is 1e06, and if the maximum ratio is set to 100%,

3.3 Instrument Subsystem Command

the minimum ratio is 1e-04 (100%/1e06). The relevant command is :PSTatistic[1]:CCDF:Y:MAX (set the maximum statistical probability value).

Query: :PSTatistic[1]:CCDF:DECades?

Setting: :PSTatistic[1]:CCDF:DECades <NRf> <NRf> ranges from 1 to 6.

Example: PST:CCDF:DEC?

PST:CCDF:DEC 6

Limit:

Reset The number of decimal places is set to 6.

state:

:PSTatistic[1]:CCDF:END:ACTion

Function: Query or set the statistics end behavior. The end conditions are: the count reaches the set end count, or the statistics timing reaches the set end timing. There are three operations, respectively: Stop (STOP or 0): The statistics stops when the end conditions are met. Clear (FLUSh or 1): Clear the statistics buffer when the end conditions are met, and restart the statistics measurement. Halve (DECimate or 2): Halve the count in the statistics buffer when the end conditions is met, and continue the statistics measurement.
 Query: :PSTatistic[1]:CCDF:END:ACTion?
 Setting: :PSTatistic[1]:CCDF:END:ACTion <character data
 <character data> is: STOP, FLUSh, DECimate

Example:PST:CCDF:END:ACT?Query the statistics end behavior.PST:CCDF:END:ACTSTOPSet "Stop" statistics to end the behavior.

Limit:

Reset End behavior is set to STOP.

state:

:PSTatistic[1]:CCDF:GAUSsian:MARKer[1]|2[:SET]

Function:	Set the marker to the Gaussian probability curve. Related commands: PSTatistic[1]:CCDF:REFerence:MARKer[1] 2[:SET] PSTatistic[1]:CCDF:TRACe:MARKer[1] 2[:SET] The 87234 does not support this command at the moment.	
Query:	Not supported	
Setting:	:PSTatistic[1]:CCDF:GAUSsian:MARKer[1] 2[:SET]	
Example:	PST:CCDF:GAUS:MARK	Set the Marker 1 to the Gaussian probability curve.
	PST:CCDF:GAUS:MARK1	Set the Marker 1 to the Gaussian probability curve.
	PST:CCDF:GAUS:MARK2	Set the Marker 2 to the Gaussian probability curve.

Limit:

Reset If the current display mode is not a statistics trace or statistics table, it prompts "-221,

state: "Settings conflict"".

If the Gaussian curve is not turned on, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:GAUSsian[:STATe]

Function:	Query or set the display status of Gaussian probability curve. The 87234 does not support this command at the moment.	
Query:	:PSTatistic[1]:CCDF:GAUSsian[:STATe]?	
Setting:	:PSTatistic[1]:CCDF:GAUSsian[:STATe] <boolean data=""> Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean></boolean>	
Example:	PST:CCDF:GAUS?	Query the display status of Gaussian probability curve.
	PST:CCDF:GAUS 1	Turn on the Gaussian probability curve display switch.

Limit:

Reset state:	Display the Gaussian probability curve.
Error	If the current display mode is not a statistics trace or statistics table, it prompts "-221,
message:	"Settings conflict"".

:PSTatistic[1]:CCDF:MARKer[1]|2:DATA?

Function:	Query the power and probability at the marker in the statistical trace. Return data in the form of <power>, <pct>, For example, 0, 36.79 0 for power with probability of 36.79</pct></power>	
Query:	:PSTatistic[1]:CCDF:MARKer[1] 2:DATA?	
Setting:	Not supported	
Example:	PST:CCDF:MARK1:DATA?	Query the power and probability at Marker 1.
Limit:		
Error message:	If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".	
DCTatiat		

:PSTatistic[1]:CCDF:MARKer:DELTa?

Function: Query two power differences and probability differences (M2-M1).
 Return data in the form of <ΔPOWER>, <ΔPCT>,
 For example -3, 3.87
 The power of Marker 2 minus the power of Marker 1 is -3. The probability that the power of Marker 2 minus Marker 1 is 3.87

Query: :PSTatistic[1]:CCDF:MARKer:DELTa?

Setting: Not supported

Example: PST:CCDF:MARK:DELT?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:MARKer[1]|2:X

Function: Query or set the horizontal position of the marker. The markers range from 0 to the

3.3 Instrument Subsystem Command

maximum power of the X-axis.

Query: :PSTatistic[1]:CCDF:MARKer[1]|2:X?

Setting: :PSTatistic[1]:CCDF:MARKer[1]|2:X <NRf> <NRf> ranges from 0 to the maximum power of the X-axis.

Example: PST:CCDF:MARK2:X? Query the horizontal power of Marker 2.

PST:CCDF:MARK1:X 1.6 Set the horizontal power of Marker to 1.6 dB.

Limit:

Reset The horizontal power of the marker is set to 0.

state:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:MARKer[1]|2:Y

Function: Query or set the vertical position of the marker (i.e. probability value). The markers range from 0 to 100%.

Query: :PSTatistic[1]:CCDF:MARKer[1]|2:Y?

Setting: :PSTatistic[1]:CCDF:MARKer[1]|2:Y <NRf> <NRf> range from 0 to 100%.

Example: PST:CCDF:MARK2:Y? Query the probability of Marker 2.

PST:CCDF:MARK1:Y 16 Set the probability of Marker 1 to 16%.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:POWer?

- **Function:** Query the power at a given probability point. The input parameter indicates the specified probability.
- Query: :PSTatistic[1]:CCDF:POWer? <NRf> <NRf> range from 0 to 100%.

Setting: Not supported

Example: PST:CCDF:POW? 10 Query the power with a probability of 10%.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:PROBability?

Function: Query the probability at a given power point. The input parameter indicates the specified power.

Query: :PSTatistic[1]:CCDF:PROBability? <NRf> <NRf> ranges from 0 to 50 dB.

Setting: Not supported

Example: PST1:CCDF:PROB? 6.78 Query the probability when the power in Channel A is 6.78 dB.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221,

3.3 Instrument Subsystem Command message: "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence:DATA?

Function: Query the reference statistical probability list of the 87234. The power range is 0dB to the maximum power. The number of elements in the list is 501, and the unit is% (for example, 18.9 means 18.9%).

The format of the returned data is <Arbitrary data block>. See Section 7.7.6 of IEEE 488.2,

#nNNN...Nddd.....ddd<LF>

| Data newline character indicating the end of the data block.

Data length (i.e., the number of bytes of d)

Number of bits of data length (i.e., the number of bits of N)

The marker for the start of the data block.

For example: #42004 in <LF> n = 4 and N = 2004.

Each data element is formatted as IEEE754 32-bit floating-point data, i.e., 4 bytes.

- **Query:** :PSTatistic[1]:CCDF:REFerence:DATA?
- Setting: Not supported

Example: PST:CCDF:REF:DATA?

Query the statistical probability list of the reference trace.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

If there is no reference data, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence:MARKer[1]|2[:SET]

Function:	Set the marker to the reference statisti Related commands: PSTatistic[1]:CCDF:GAUSsian:MARKer[PSTatistic[1]:CCDF:TRACe:MARKer[1]]2	1] 2[:SET]
Query:	Not supported	
Setting:	:PSTatistic[1]:CCDF:REFerence:MARKe	r[1] 2[:SET]
Example:	PST:CCDF:REF:MARK	Set Marker 1 to the reference statistics curve.
	PST:CCDF:REF:MARK1	Set Marker 1 to the reference statistics curve.
	PST:CCDF:REF:MARK2	Set Marker 2 to the reference statistics curve.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, **message:** "Settings conflict"".

If the reference curve is not turned on, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence:POWer:AVERage?

Function: Query the average power of the reference statistics curve.

Query: :PSTatistic[1]:CCDF:REFerence:POWer:AVERage?

Setting: Not supported

Example: PST:CCDF:REF:POW:AVER?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221,

message: "Settings conflict"".

If there is no reference data, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence:POWer:PEAK?

Function: Query the peak power of the reference statistics curve.

Query: :PSTatistic[1]:CCDF:REFerence:POWer:PEAK?

Setting: Not supported

Example: PST:CCDF:REF:POW:PEAK?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

If there is no reference data, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence:POWer:PTAVerage?

Function: Query the peak to average ratio of the reference statistics curve.

Query: :PSTatistic[1]:CCDF:REFerence:POWer:PTAV?

Setting: Not supported

Example: PST:CCDF:REF:POW:PTAV?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

If there is no reference data, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:REFerence[:STATe]

Function:	Query or set the display status of the reference statistics curve. The 87234 does not support this command at the moment.	
Query:	:PSTatistic[1]:CCDF:REFerence[:STATe]?	
Setting:	:PSTatistic[1]:CCDF:REFerence[:STATe] <boolean data=""> Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean></boolean>	
Example:	PST:CCDF:REF? PST:CCDF:REF ON	Turn on the reference statistics curve.
Limit:		
Reset state:	Turn off the display of the reference statistics curve.	
Error If the current display mode is not a statistics trace or statistics table, it message: "Settings conflict"".		is not a statistics trace or statistics table, it prompts "-221,
	If there is no reference data, it prompts "-221, "Settings conflict"".	

:PSTatistic[1]:CCDF:STORe:REFerence

Function: Store statistics curve to the reference statistics curve.

Query:	:PSTatistic[1]:CCDF:STORe:REFerence?	Query whether the reference curve exists.
--------	--------------------------------------	---

Setting: :PSTatistic[1]:CCDF:STORe:REFerence

Example: PST:CCDF:STOR:REF? C

PST:CCDF:STOR:REF

Query whether the reference curve exists.

Store the statistics curve to the reference statistics curve.

3.3 Instrument Subsystem Command

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:TABLe?

Function: Query the statistical measurement list, including average power, average power probability, power under 6 probabilities (10%, 1%, 0.1%, 0.01%, 0.001%, and 0.0001%), peak average ratio, and sampling times.

Query: :PSTatistic[1]:CCDF:TABLe?

Setting: Not supported

Example: PST1:CCDF:TABL? Query the statistical measurement list.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:TIME

 Function:
 Query or set the statistics end timing, in seconds.

 Related commands:
 :PSTatistic[1]:CCDF:COUNt

 :PSTatistic[1]:CCDF:END:ACTion

Query: :PSTatistic[1]:CCDF:TIME? [MIN|MAX]

Setting: :PSTatistic[1]:CCDF:TIME <numeric data>
 Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.
 <NRf> ranges 0 to 3600 seconds (the valid values are 0, 1, 2, 5, 10, 30, 60, 120, 300, 600, 1800, and 3600. If these values are not true and do not exceed the limit, they will be automatically rounded down to similar values). 0 means that statistics end timing is not considered.

Example:PST:CCDF:TIME?Query the statistical timing.PST:CCDF:TIME100Set the statistics end timing to 60 seconds.

Limit:

Reset Set to 0 (disregarding statistics end timing).

state:

:PSTatistic[1]:CCDF:TRACe:MARKer[1]|2[:SET]

 Function:
 Set marker to channel statistics curve.

 Related commands:
 PSTatistic[1]:CCDF:GAUSsian:MARKer[1]|2[:SET]

 PSTatistic[1]:CCDF:REFerence:MARKer[1]|2[:SET]

 Query:
 Not supported

 Setting:
 :PSTatistic[1]:CCDF:TRACe:MARKer[1]|2[:SET]

 Example:
 PST:CCDF:TRAC:MARK

PST:CCDF:TRAC:MARK1Set Marker 1 to the channel statistics curve.PST:CCDF:TRAC:MARK2Set Marker 2 to the channel statistics curve.

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221,

74

message: "Settings conflict"".

:PSTatistic[1]:CCDF:TRACe:POWer:AVERage?

Function: Query the average power of the channel statistics curve.

Query: :PSTatistic[1]:CCDF:TRACe:POWer:AVERage?

Setting: Not supported

Example: PST:CCDF:TRAC:POW:AVER?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:TRACe:POWer:PEAK?

Function: Query the peak power of the channel statistics curve.

Query: :PSTatistic[1]:CCDF:TRACe:POWer:PEAK?

Setting: Not supported

Example: PST:CCDF:TRAC:POW:PEAK?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:TRACe:POWer:PTAVerage?

Function: Query the peak to average ratio of the channel statistics curve.

Query: :PSTatistic[1]:CCDF:TRACe:POWer:PTAV?

Setting: Not supported

Example: PST:CCDF:TRAC:POW:PTAV?

Limit:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, "Settings conflict"".

:PSTatistic[1]:CCDF:TRACe[:STATe]

Function: Query or set the display status of channel statistics curve.

Query: :PSTatistic[1]:CCDF:TRACe[:STATe]?

Setting: :PSTatistic[1]:CCDF:TRACe[:STATe] <Boolean data> Valid forms of <Boolean data> are: 0, OFF, 1, ON

Example:PST1:CCDF:TRAC?Query the display status of statistical curve.PST:CCDF:TRACONTurn on the statistical curve.

Limit:

Reset Turn on the display of channel statistics curve.

state:

Error If the current display mode is not a statistics trace or statistics table, it prompts "-221, **message:** "Settings conflict"".

:PSTatistic[1]:CCDF:Y:MAX

Function: Query or set the "maximum probability value" for statistical display.

Query: :PSTatistic[1]:CCDF:Y:MAX?

3.3 Instrument Subsystem Command

Setting: :PSTatistic[1]:CCDF:Y:MAX <NRf>
 <NRf> takes the following sets of numbers in close proximity: 0.01, 0.1, 1, 10, and 100. In PCT.
 Example: PST:CCDF:Y:MAX?

PST:CCDF:Y:MAX 99

Set the maximum probability value to 100 (99 is taken as close to 100).

Limit:

Reset state:	The maximum display probability value is set to 100%.
Error message:	

3.3.8 Sensor Subsystem Command (SENSe)

[:SENSe[1]:]AVERage[1]|2:COUNt

Function:	Query or set the average number of measurements and the average number of videos. AVERage [1]: measurement average, where consecutive measurements are averaged in order to improve the accuracy of the measurements. Setting this command will automatically perform the following command settings: AVERage:COUNt:AUTO OFF AVERage1:STATE ON AVERage2: Video average, or trace average, where consecutive traces are averaged without affecting the dynamic range of the signal to reduce the effects of noise. Setting this command will automatically perform the following command settings: AVERage2:STATE ON	
Query:	[:SENSe[1]:]AVERage[1] 2:COUNt? [MIN MAX]	
Setting:	[:SENSe[1]:]AVERage[1]]2:COUNt <numeric data=""> Valid values for numeric data are: DEF, MIN, MAX, <nrf>, where DEF and <nrf> are used for setting only. <nrf> ranges from 1 to 1024. DEF is 8, MIN is 1, MAX 为 1024.</nrf></nrf></nrf></numeric>	
Example:	SENS1:AVER:COUN?	Query the average number of measurements.
	SENS1:AVER2:COUN?	Query the average number of videos.
	SENS1:AVER:COUN? MAX	Query the maximum value of the settable average number of measurements.
	SENS:AVER:COUN 28	Set the average number of measurements to 28.
Reset state:	Average times set to 8.	

[:SENSe[1]:]AVERage:COUNt:AUTO

Function: Query or set the measurement auto-average state.

- **Query:** [:SENSe[1]:]AVERage:COUNt:AUTO?
- Setting: [:SENSe[1]:]AVERage:COUNt:AUTO <Boolean data>
 - Valid forms of <Boolean data> are: 0, OFF, 1, ON
- **Example:** SENS1:AVER:COUN:AUTO? Query the automatic average status.

SENS: AVER: COUN: AUTO 1

Limit:

Error

message:

Reset Auto Average is set to ON. state:

[:SENSe[1]:]AVERage:RESet

Function: Clear the averaging buffer and restart averaging of the 87234. The 87234 is equipped with an internal averaging buffer for storing historical measurement data. This command is used to clear this buffer and re-store it.

Turn on Auto Average.

Query: Not supported

Setting: [:SENSe[1]:]AVERage:RESet

Example: AVER:RES

Limit:

Reset

state:

[:SENSe[1]:]AVERage:SDETect

Function: Query or set the channel step detection state.

In Auto Average mode, the last four averages are used to compare with the entire filter value, and the digital filter is cleared when the difference between the two averages exceeds 15%. The filter then starts storing the new measured values. The use of this function is able to shorten the filtering time when the power changes more significantly.

Re-average

Query: [:SENSe[1]:]AVERage:SDETect?

Setting: [:SENSe[1]:]AVERage:SDETect <Boolean data> Valid forms of <Boolean data> are: 0, OFF, 1, ON

SENS1:AVER:SDET? Query the step detection state. Example: SENS:AVER:SDET 1 Turn on the step detection.

Limit:

Reset Step detection is set to ON.

state:

[:SENSe[1]:]AVERage[1]|2[:STATe]

Function: Query or set the measurement average and video average switch state.

[:SENSe[1]:]AVERage[1]]2[:STATe]? Query:

Setting: [:SENSe[1]:]AVERage[1]]2[:STATe] <Boolean data>

Valid forms of <Boolean data> are: 0, OFF, 1, ON

Example: SENS1:AVER? Query the measurement average switch status. SENS: AVER 1

Turn on the measurement average switch.

Reset Average state is set to ON.

state:

[:SENSe[1]:]BANDwidth|BWIDth:VIDeo

Function: Query or set the measured video bandwidth.

Query: [:SENSe[1]:]BANDwidth|BWIDth:VIDeo?

3.3 Instrument Subsystem Command

Setting:	[:SENSe[1]:]BANDwidth BWIDth:VIDeo	<character data=""></character>
	The valid form of <character data=""> is as follows:</character>	
	OFF 0: OFF (30M)	
	LOW 1: Low (5M)	
	MEDium 2: Medium (15M)	
	HIGH 3: High (30M)	
Example:	SENS1:BAND:VID?	QueryVBW
	BWID:VID 1	VBW is low
	BAND:VID HIGH	VBW is high
Reset	VBW is OFF	

state:

[:SENSe[1]:]BUFFer:COUNt

 Function:
 Query or set the buffer size of external trigger measurement, which is only used for external trigger measurement.

 Note: This command can only be set when
 [:SENSe[1]:]FREQuency[:CW|FIXed]:STEP

is set to 0, otherwise an error will be reported.

Query: [:SENSe[1]:]BUFFer:COUNt?

Setting: [:SENSe[1]:]BUFFer:COUNt <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 1 to 80000 DEF 为 1. MIN 为 1 MAX 为 80000.

- Example:SENS:BUFF:COUN?Query the current buffer size of external trigger
measurement.SENS:BUFF:COUN 100Set the buffer size of external trigger
measurement to 100.
- **Error** If the trigger source (TRIG:SOUR) is not "external trigger", it prompts "-221, "Settings conflict"".

If the number of frequency steps (FREQ:STEP) is not 0, it prompts "-221, "Settings conflict"".

Reset

state:

[:SENSe[1]:]BUFFer:MTYPe

1

Function: Query or set the external trigger buffer measurement type, which is only used for external trigger measurement.

Query: [:SENSe[1]:]BUFFer:MTYPe?

Setting: [:SENSe[1]:]BUFFer:MTYPe <string> <string> can be the following values: "AVER": average power measurement mode "PEAK": peak power measurement mode "PTAV": peak-to-average ratio measurement mode

"MIN": minimum power measurement mode

3.3 Instrument Subsystem Command

Example: BUFF:MTYP? SENS:BUFF:MTYP "PEAK"

Query the current buffer measurement type. Set the buffer measurement mode to "Peak".

If the trigger source (TRIG:SOUR) is not "external trigger", it prompts "-221, "Settings Error conflict"". message:

If the parameter is an invalid string, it prompts "-224, "Illegal parameter value"". If the detection measurement method (SENS:DET:FUNC) is "AVER", the message "-221, it prompts "Settings conflict"".

Reset Average power measurement mode

state:

[:SENSe[1]:]CORRection:CSET2[:SELect]

Function: Set or query the name of the frequency response offset table used for the current device.

The data of the frequency response offset table is shared between the two channels, but the switch states are separate.

- Query: [:SENSe[1]:]CORRection:CSET2[:SELect]?
- Setting: [:SENSe[1]:]CORRection:CSET2[:SELect] <string> <string> indicates the name of the frequency response offset table.

Example: SENS:CORR:CSET2? frequency Query the currently selected response offset table. Select the frequency response offset table

SENS:CORR:CSET2 "fdo0"

named "fdo0".

If the frequency response offset table specified by the parameter does not exist, it Error prompts "-256, "File name not found"". message:

No effect. Reset

state:

[:SENSe[1]:]CORRection:CSET2:STATe

- Function: Query or set the enable state of the frequency response offset table. The data of the frequency response offset table is shared between the two channels, but the enable states are separate.
- Query: [:SENSe[1]:]CORRection:CSET2:STATe?
- [:SENSe[1]:]CORRection:CSET2:STATe <Boolean data> Setting: Valid forms of <Boolean data> are: 0, OFF, 1, ON

SENS1:CORR:CSET2:STAT? Example: Query the enable state of the frequency response offset table.

SENS:CORR:CSET2:STAT 0 Disable the frequency response offset table.

If the number of frequency points and the number of amplitude gain (offset) points in Error the currently selected frequency response offset table are different, it prompts "-226," message: list length is not the same ""

If the point in the currently selected frequency response offset table is 0, it prompts "-221, "Settings conflict"".

Does not affect the to enable state of the frequency response offset table. Reset

state:

[:SENSe[1]:]CORRection:DCYCle[:INPut][:MAGNitude]

Function: Query or set the channel duty cycle setting value for pulse power measurement.

Pulse power measurements average any aberrations such as overshoot, ringing, etc. The measurement is a mathematical representation of the pulse power measurement and not a true measurement. The 87234 measures the average power of the pulse signal by dividing it by the duty cycle to obtain a pulse power reading.

Note: To ensure the accuracy of the measurement, the input signal must be a rectangular pulse, other pulses (such as triangle wave, linear FM pulse) will lead to inaccurate measurement.

The switching ratio of the pulse under test must be much larger than the duty cycle setting.

Query: [:SENSe[1]:]CORRection:DCYCle[:INPut][:MAGNitude]? [MIN|MAX]

Setting: [:SENSe[1]:]CORRection:DCYCle[:INPut][:MAGNitude] <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

channel.

Query the current duty cycle setting value of the

Enable the duty cycle correction for the channel.

Query the maximum settable duty cycle.

Set the channel duty cycle to 50%.

<NRf> ranges from 0.001 to 100, in %.

DEF is 100, MIN is 0.001, MAX 为 100.

Example: SENS:CORR:DCYC?

CORR:DCYC? MAX CORR:DCYC 50

Reset 100%

state:

[:SENSe[1]:]CORRection:DCYCle[:INPut]:STATe

Function: Query or set the channel duty cycle enable switch for pulse power measurement.

- Query: [:SENSe[1]:]CORRection:DCYCle[:INPut]:STATe?
- Setting: [:SENSe[1]:]CORRection:DCYCle[:INPut]:STATe <Boolean data>
- Valid forms of <Boolean data> are: 0, OFF, 1, ON

Example: SENS:CORR:DCYC:STAT? Query the to duty cycle enable state of the channel.

CORR:DCYC:STAT 1

Reset

state:

[:SENSe[1]:]CORRection:FDOFfset[:INPut][:MAGNitude]?

- **Function:** Query the currently used frequency response offset factor. It is in PCT, i.e. 100 means 100%.
- Query: [:SENSe[1]:]CORRection:FDOFfset[:INPut][:MAGNitude]?

Setting: Not supported

Off

Example: CORR:FDOF? Query the currently used frequency response offset factor.

Limit: Only for USB channel (8), other channels are not supported.

[:SENSe[1]:]CORRection:GAIN[1]|2|3|4[:INPut][:MAGNitude]

Function:Used to set or query four kinds of gains for the current device;The equivalent form of GAIN [1] is CFACtor, which denotes the calibration factor of the

87234. The former conforms to the SCPI specification, while the latter does not. GAIN [1] is not supported in this case;

GAIN2 indicates the channel offset. It is supported in this case. It can be queried or set. The equivalent form of GAIN3 is DCYCle, which represents the duty cycle.

The equivalent form of GAIN4 is FDOFfset, which represents the frequency response offset factor. GAIN4 is supported in this case. The frequency response offset factor is only available for query.

Query the channel offset.

Set the channel offset to 3.6dB.

Query the maximum settable channel offset

Query the frequency response offset value.

Query: [:SENSe[1]:]CORRection:GAIN2|4[:INPut][:MAGNitude]? [MIN|MAX]

Setting: [:SENSe[1]:]CORRection:GAIN2[:INPut][:MAGNitude] <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

value.

<NRf> ranges from -100 to 100, in dB.

DEF is 0dB,

MIN is -100dB,

Example: SENS:CORR:GAIN2? CORR:GAIN2? MAX

SENS1:CORR:GAIN4?

CORR:GAIN2 3.6

Reset Channel offset is 0; duty cycle is 100%

state:

[:SENSe[1]:]CORRection:GAIN[1]|2|3|4[:INPut]:STATe

The equivalent form of GAIN [1] is CFACtor, which denotes the calibration factor of the Function: 87234. The former conforms to the SCPI specification, while the latter does not. GAIN [1] is not supported in this case; GAIN2 indicates the channel offset. The equivalent form of GAIN3 is DCYCle, which represents the duty cycle. GAIN3 is not supported in this case The equivalent form of GAIN4 is FDOFfset, which represents the frequency response offset factor. This case does not support the query and setting of GAIN4 state. Query: [:SENSe[1]:]CORRection:GAIN2[:INPut]:STATe? [:SENSe[1]:]CORRection:GAIN2[:INPut]:STATe <Boolean data> Setting: Valid forms of <Boolean data> are: 0, OFF, 1, ON Example: SENS:CORR:GAIN2:STAT? Query the channel offset enable state. CORR:GAIN2:STAT 1 Enable the channel offset. Reset Off

state:

[:SENSe[1]:]DETector:FUNCtion

Function: Query or set the detection measurement mode of the 87234.

Query: [:SENSe[1]:]DETector:FUNCtion?

Setting: [:SENSe[1]:]DETector:FUNCtion <character data> The valid values of the character data are as follows: AVERage or 0: Average power measurement mode NORMal or 1: Normal peak measurement mode

3. Program C	control Commands	
3.3 Instrume	ent Subsystem Command	
Example:	DET:FUNC?	Query the measurement method
	DET:FUNC AVER	Set to average power measurement mode.
Reset state:	Average power measurement mode.	
[:SENSe[1]:]FREQuency[:CW FIXed]	
Function:	Query or set the frequency.	
Query:	[:SENSe[1]:]FREQuency[:CW FIXed]?	[MIN MAX]
Setting:	[:SENSe[1]:]FREQuency[:CW FIXed]	<numeric data=""></numeric>
	Valid values for numeric data are: D used for setting only.	EF, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
	<nrf> ranges 1e3 to 1e12, in Hz,</nrf>	
	DEF is 1GHz,	
	MIN is 1kHz	

DEF is 1GHz, MIN is 1kHz, MAX is 1000GHz,

 Example:
 FREQ?
 Query the frequency.

 FREQ?
 MAX
 Query the maximum settable frequency.

 SENS:FREQ
 8GHz
 Set the frequency to 8GHz.

 Reset
 1GHz.
 Guery the maximum settable frequency.

state:

[:SENSe[1]:]FREQuency[:CW|FIXed]:STARt

Function:	Query or set the frequency for the start frequency of the external trigger buffer sweep measurement.		
	Associated commands:		
	[:SENSe[1]:]FREQuency[:CW FIXed]:S	ТОР	
	[:SENSe[1]:]FREQuency[:CW FIXed]:S	TEP	
	The start frequency can be greater than or equal to the stop frequency.		
Query:	[:SENSe[1]:]FREQuency[:CW FIXed]:STARt? [MIN MAX]		
Setting:	: [:SENSe[1]:]FREQuency[:CW FIXed]:STARt <numeric data=""></numeric>		
Ū	-	EF, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>	
	<nrf> ranges 1e3 to 1e12, in Hz,</nrf>		
	DEF is 1GHz,		
	MIN is 1kHz,		
	MAX 为 1000GHz.		
Example:	FREQ:STAR?	Query the start frequency of sweep measurement.	
	FREQ:STAR? MAX	Query the maximum settable start frequency of sweep measurement.	
	SENS:FREQ:STAR 8GHz	Set the start frequency of sweep measurement to 8GHz.	
Reset state:	1GHz.		

0.0

3.3 Instrument Subsystem Command

[:SENSe[1]:]FREQuency[:CW|FIXed]:STEP

Function: Query or set the frequency step number for the external trigger buffer sweep measurement.

Associated commands:

[:SENSe[1]:]FREQuency[:CW|FIXed]:STARt [:SENSe[1]:]FREQuency[:CW|FIXed]:STOP

[:SENSe[1]:]BUFFer:COUNt

The number of frequency steps can be 0. When it is 0, the [:SENSe[1]:]BUFFer:COUNt command can be used to set the buffer measurement size; when it is not 0, the set value of [:SENSe[1]:]BUFFer:COUNt is invalid.

The following equation can be used to calculate the number of frequency steps (Step) (Start, Stop, and Interval are the start frequency, stop frequency and frequency interval respectively. The Interval cannot be 0).

$$Step = (int) \left| \frac{Start - Stop}{Interval} \right| + 1$$

Query: [:SENSe[1]:]FREQuency[:CW|FIXed]:STEP? [MIN|MAX]

Setting: [:SENSe[1]:]FREQuency[:CW|FIXed]:STEP <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

<NRf> ranges from 0 to 80000.

DEF is 0,

MIN is 0, MAX 为 80000.

Example: FREQ:STEP? FREQ:STEP? MAX SENS:FREQ:STEP 100

until 0 is returned.

Query the number of frequency steps. Query the maximum settable frequency steps.

Set the number of frequency steps to 100.

Reset state:

[:SENSe[1]:]FREQuency[:CW|FIXed]:STOP

Function: Query or set the frequency for the stop frequency of the external trigger buffer sweep measurement. Associated commands: [:SENSe[1]:]FREQuency[:CW|FIXed]:STARt [:SENSe[1]:]FREQuency[:CW|FIXed]:STEP The start frequency can be greater than or equal to the stop frequency. Query: [:SENSe[1]:]FREQuency[:CW|FIXed]:STOP? [MIN|MAX] Setting: [:SENSe[1]:]FREQuency[:CW|FIXed]:STOP <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges 1e3 to 1e12, in Hz, DEF is 1GHz, MIN is 1kHz, MAX 为 1000GHz. Example: FREQ:STOP? Query the end frequency of sweep measurement. FREQ:STOP? MAX Query the maximum settable stop frequency of

SENS:FREQ:STOP 8GHz

sweep measurement.

Set the end frequency of sweep measurement to $8 \mbox{GHz}.$

Reset 1GHz. state:

[:SENSe[1]:]LIST:FREQuency:STARt

Function: Query or set the start frequency of the timeslot list sweep measurement. Related commands:

[:SENSe[1]:]LIST:FREQuency:STOP

Query: [:SENSe[1]:]LIST:FREQuency:STARt? [MIN|MAX]

- Setting: [:SENSe[1]:]LIST:FREQuency:STARt <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges 1e3 to 1e12, in Hz, DEF is 1GHz, MIN is 1kHz, MAX 为 1000GHz.
- Example:
 LIST:FREQ:STAR?
 Query the start frequency of the timeslot list sweep measurement.

 LIST:FREQ:STAR?
 MAX
 Query the maximum settable start frequency of the timeslot list sweep measurement.

 SENS:LIST:FREQ:STAR
 8GHz
 Set the start frequency of the timeslot list sweep measurement to 8GHz.

 Error
 If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";
- **message:** "Settings conflict""; If the detection measurement method (SENS:DET:FUNC) is "AVER", the message "-221, it prompts "Settings conflict"".

Reset 1GHz.

state:

[:SENSe[1]:]LIST:FREQuency:STOP

Function: Query or set the stop frequency of the timeslot list sweep measurement. Related commands:

[:SENSe[1]:]LIST:FREQuency:STARt

Query: [:SENSe[1]:]LIST:FREQuency:STOP? [MIN|MAX]

Setting: [:SENSe[1]:]LIST:FREQuency:STOP <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges 1e3 to 1e12, in Hz, DEF is 1GHz, MIN is 1kHz, MAX 为 1000GHz.
Example: LIST:FREQ:STOP? Query the stop frequency of the timeslot list

LIST:FREQ:STOP? MAX

sweep measurement.

SENS:LIST:FREQ:STOP 8GHz

Set the stop frequency of the timeslot list sweep measurement to 8GHz.

Error If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";
 If the detection measurement method (SENS:DET:FUNC) is "AVER", the message "-221, it prompts "Settings conflict"".
 Reset 1GHz.

Reset state:

[:SENSe[1]:]LIST:MTYPe

Function: Query or set the timeslot list sweep measurement type, which is only used for external trigger measurement.

Query: [:SENSe[1]:]LIST:MTYPe?

 Setting:
 [:SENSe[1]:]LIST:MTYPe <string>

 <string> can be the following values:
 "AVER": average power measurement mode

 "PEAK": peak power measurement mode
 "PEAK": peak-to-average ratio measurement mode

 "PTAV": peak-to-average ratio measurement mode
 "MIN": minimum power measurement mode

 "MIN": minimum power measurement mode
 "Query the type of the current timeslot list sweep

SENS:LIST:MTYP "PEAK"

Set the timeslot list sweep measurement type to "Peak".

frequency measurement.

Error If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";

If the parameter is an invalid string, it prompts "-224, "Illegal parameter value"".

Reset Average power measurement mode

state:

[:SENSe[1]:]LIST:POINts

Function: Query or set the number of points for timeslot list sweep measurement, which is only used for external trigger measurement.

If the start frequency (Start) and the stop frequency (Stop) of the slot list sweep are different, then after determining the frequency step (Step), the following equation can be used to calculate the number of measurement points (Points) (Step cannot be zero):

$$Points = (int) \left| \frac{Start - Stop}{Step} \right| + 1$$

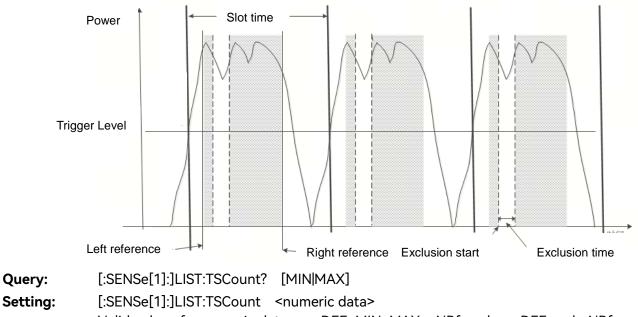
- Query: [:SENSe[1]:]LIST:POINts? [MIN|MAX]
- Setting: [:SENSe[1]:]LIST:POINts <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

<NRf> ranges from 1 to 5000. DEF is 1, MIN is 1, MAX 为 5000.

Example: LIST:POIN?

Query the number of points of the timeslot list sweep measurement.


3. Program C	Control Commands	
3.3 Instrume	ent Subsystem Command	
	LIST:POIN? MAX	Query the maximum settable points of the timeslot list sweep measurement.
	SENS:LIST:POIN 100	Set the number of points for the timeslot list sweep measurement to 100.
Error message:	If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";	
	If the detection measurement meth "-221, it prompts "Settings conflict"".	nod (SENS:DET:FUNC) is "AVER", the message
Reset state:	until 1 is returned.	
[:SENSe[1]:]LIST:STATe	
Function:	Query or set the timeslot list sweep m	neasurement state.
Query:	[:SENSe[1]:]LIST:STATe?	
Setting:	[:SENSe[1]:]LIST:STATe <boolean da<="" th=""><th>ata></th></boolean>	ata>
•	Valid forms of <boolean data=""> are: 0,</boolean>	OFF, 1, ON
Example:	LIST:STAT?	Query the timeslot list sweep measurement state.
	LIST:STAT 1	Enable the timeslot list sweep measurement
Error message:	If the current time timeslot list sweep "Settings conflict"";	o measurement is in progress, it prompts "-221,
-	If the detection measurement methor "Settings conflict"";	d (SENS:DET:FUNC) is "AVER", it prompts "-221,
	If the trigger source (TRIG:SOUR) is r conflict"".	not "external trigger", it prompts "-221, "Settings
. .	011	

Reset Off

state:

[:SENSe[1]:]LIST:TSCount

Function: Query or set the number of slots for the timeslot list sweep measurement. The timeslot diagram is shown below:

		o. r rogram control commando
		3.3 Instrument Subsystem Command
	used for setting only.	
	<nrf> ranges from 1 to 16.</nrf>	
	DEF is 1,	
	MIN is 1,	
	MAX 为 16.	
Example:	LIST:TSC?	Query the number of time slots for the timeslot list sweep measurement.
	LIST:TSC? MAX	Query the maximum settable time slots for the timeslot list sweep measurement.
	SENS:LIST:TSC 8	Set the number of time slots for the timeslot list sweep measurement to 8.
Error message:	If the current time timeslot list swee "Settings conflict"";	ep measurement is in progress, it prompts "-221,
-	If the detection measurement me "-221, "Settings conflict"";	ethod (SENS:DET:FUNC) is "AVER", it prompts
		f the timeslot measurement (LIST:TSL:TIME) and TSC) exceeds 1s, it prompts "-221, "Settings
Reset state	e: until 1 is returned.	
Descriptio	number of sweep measurement points multiplied by the number of time slots. For example, if the number of measurement points is 100 and the number of time slots is	
	8, then the above command returns	
[:SENSe[1]:]LIST:TSLot:EXCLude:OFFSet:7	IIME
Function:	Query or set the start time (offset tim the start position of the slot (see "Excl	e) of the "measurement exclusion area" relative to usion Start" in the slot diagram).
Query:	[:SENSe[1]:]LIST:TSLot:EXCLude:OFFS	Set:TIME? [MIN MAX]
Setting:	[:SENSe[1]:]LIST:TSLot:EXCLude:OFFS	Set:TIME <numeric data=""></numeric>
5		EF, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
	used for setting only.	
	<nrf> ranges from 0 to 0.1, in second</nrf>	s with an accuracy of 12.5ns
	DEF is 0,	
	MIN is 0,	
	MAX 为 0.1.	
Example:	LIST:TSL:EXCL:OFFS:TIME?	Query the start time of "measurement exclusion area".
	LIST:TSL:EXCL:OFFS:TIME? MAX	Query the maximum settable start time of "measurement exclusion area".
	LIST:TSL:EXCL:OFFS:TIME 1e-5	Set the start time of "measurement exclusion area" to 10us.

Error If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";

If the detection measurement method (SENS:DET:FUNC) is "AVER", the message "-221, it prompts "Settings conflict"".

Reset 0s.

state:

3.3 Instrument Subsystem Command [:SENSe[1]:]LIST:TSLot:EXCLude:TIME

Function: Query or set the time duration of the "measurement exclusion area" relative to the start position of the slot (see "Exclusion Duration" in the slot diagram).

Query: [:SENSe[1]:]LIST:TSLot:EXCLude:TIME? [MIN|MAX]

- Setting: [:SENSe[1]:]LIST:TSLot:EXCLude:TIME <numeric data>
 Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.
 <NRf> ranges from 0 to 0.1, in seconds with an accuracy of 12.5ns
 DEF is 0,
 MIN is 0,
 MAX 为 0.1.
 Example: LIST:TSL:EXCL:TIME? Query the time duration of "measurement"
 - LIST:TSL:EXCL:TIME?MAXexclusion area".LIST:TSL:EXCL:TIME?MAXQuery the maximum settable time duration of "measurement exclusion area".LIST:TSL:EXCL:TIME 1e-5Set the time duration of "measurement exclusion area" to 10us.
- **Error** If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";
 - If the detection measurement method (SENS:DET:FUNC) is "AVER", the message "-221, it prompts "Settings conflict"".
- Reset

state:

[:SENSe[1]:]LIST:TSLot:TIME

0s.

Function: Query or set the time duration of the timeslot measurement (see "Time Slot Duration" in the slot diagram).

Query: [:SENSe[1]:]LIST:TSLot:TIME? [MIN|MAX]

Setting: [:SENSe[1]:]LIST:TSLot:TIME <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 12.5e-9 to 1, in seconds with an accuracy of 12.5ns DEF is 1e-4, MIN is 12.5e-9, MAX 为 1.

Example: LIST:TSL:TIME? duration timeslot Query the time of measurement. LIST:TSL:TIME? MAX Set the time span of time domain measurement Query the maximum settable time slot measurement length. LIST:TSL:TIME 1e-3 Set the time slot measurement length to 1ms.

Error If the current time timeslot list sweep measurement is in progress, it prompts "-221, "Settings conflict"";

If the detection measurement method (SENS:DET:FUNC) is "AVER", it prompts "-221, "Settings conflict"";

If the product of the time length of the timeslot measurement (LIST:TSL:TIME) and the number of time slots (LIST:TSC) exceeds 1s, it prompts "-221, "Settings conflict"".

Reset 100us. state:

[:SENSe[1]:]LIST:TSLot:TREF[1]|2

Function:	the timeslot measurement gate (see diagram), TREF1: left reference, TREF2: The left reference value is defined measurement gate divided by the ti defined as the difference between t measurement gate divided by the time This function effectively removes rising	as the percentage of the start time of the me slot length, and the right reference value is he time slot end time and the end time of the
Query:	[:SENSe[1]:]LIST:TSLot:TREF[1] 2? [M	1IN[MAX]
Setting:	used for setting only. <nrf> ranges from 0 to 100, in PCT, DEF is 0, MIN is 0, MAX 为 100.</nrf>	umeric data> EF, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
Example:	LIST:TSL:TREF1?	Query the left reference value of the timeslot measurement gate.
	LIST:TSL:TREF2? MAX	Query the right reference value of the maximum settable timeslot measurement gate.
	LIST:TSL:TREF2 10	Set the left reference value of the timeslot measurement gate to 10%.
Error message:	If the current time timeslot list sweep "Settings conflict"";	measurement is in progress, it prompts "-221,

message: "Settings conflict""; If the detection measurement method (SENS:DET:FUNC) is "AVER", the message

"-221, it prompts "Settings conflict"".

Reset until 0 is returned.

state:

[:SENSe[1]:]MRATe

Function: Query or set the measurement speed.

Query: [:SENSe[1]:]MRATe?

Setting: [:SENSe[1]:]MRATe <character data>

The valid values of the character data are as follows:

NORMal or 0: 20 readings per second at normal speed

DOUBle or 1: 40 readings per second at doubled speed

FAST or 2: 4000 readings per second at fast speed (if the detector measurement method (SENS:DET:FUNC) is "AVER")

50000 readings per second at fast speed (if the detector measurement method (SENS:DET:FUNC) is "NORM")

Note: In the fast test mode, the following setting paraMeter are ignored and processed by "OFF": average state, channel offset state, measurement offset state, relative measurement state, and limit state.

3.3 Instrume	ent Subsystem Command	
Example:	MRAT?	Query the measurement speed
	SENS:MRAT FAST	Set the quick measurement
Reset state:	Normal speed	

[:SENSe[1]:]PULSe:DISTal

Function:	pulse transition duration (rise time or The relevant command is: [:SENSe[1]:]PULSe:PROXimal <numeric data=""> nce</numeric>
Query:	[:SENSe[1]:]PULSe:DISTal? [MIN MA	X]
Setting:	[:SENSe[1]:]PULSe:DISTal <numeric Valid values for numeric data are: DE used for setting only. <nrf> ranges from 0 to 100. DEF is 90, MIN is 0, MAX 为 100.</nrf></numeric 	data> F, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
Example:	SENS:PULS:DIST?	Query the setting value of far point in the pulse measurement.
	PULS:DIST 81	Set the far point of the pulse to 81%.
Limit:		

Reset state: Far point set to 90%

Description: Definition of pulse transition time and pulse duration.

1) Definition of pulse transition time

The pulse transition time is commonly referred to as the rise and fall time. The rise time is a fraction of the time it takes for the specified pulse to transition from the "OFF" state to the "ON" state. The fall time is reversed. The percentage of pulse switching time is determined from the near and far points. Let the top power of the pulse be P. Generally, the rise time is the time for the pulse to change from 10%×P to 90%×P, when the near point is 10% and the far point is 90%. They are changed by [:SENSe[1]:]PULSe:PROXimal and [:SENSe[1]:]PULSe:DISTal respectively.

2) Definition of pulse duration

The pulse duration is the usual pulse width. Generally, the pulse width is the time duration from 50% of the rising edge of the pulse to 50% of the falling edge of the pulse, when the value of the midpoint is 50%. This value can be changed by [:SENSe[1]:]PULSe:MESial.

[:SENSe[1]:]PULSe:MESial

Function: Query and set the middle point in the pulse measurement, which is used to calculate the pulse duration (i.e. pulse width).

The equivalent command of this command is:TRACe[1]:DEFine:DURation:REFerence

Query: [:SENSe[1]:]PULSe:MESial? [MIN|MAX]

Setting: [:SENSe[1]:]PULSe:MESial <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

<NRf> ranges from 0 to 100.

3.3 Instrument Subsystem Command

DEF is 50, MIN is 0, MAX 为 100.

Example: SENS:PULS:MES?

PULS:MES 25

Query the setting value of middle point in the pulse measurement.

Set the middle point of the pulse to 25%.

Limit:

Middle point set to 50% Reset state:

[:SENSe[1]:]PULSe:PROXimal

Function: Query and set the middle point in the pulse measurement, which is used to calculate the pulse transition duration (rise time or fall time). The relevant command is: [:SENSe[1]:]PULSe:DISTal <numeric data> :TRACe[1]:DEFine:TRANsition:REFerence <numeric data 1>, <numeric data 2>

The value set by this command is equivalent to <numeric data 1> above.

- Query: [:SENSe[1]:]PULSe:PROXimal? [MIN|MAX]
- Setting: [:SENSe[1]:]PULSe:PROXimal <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 0 to 100. DEF is 10, MIN is 0, MAX 为 100.

Example: SENS:PULS:PROX? Query the setting value of near point near the pulse measurement.

PULS:PROX 1

Set the near point of the pulse to 1%.

Limit:

Reset Near point set to 10%

state:

[:SENSe[1]:]PULSe:UNIT

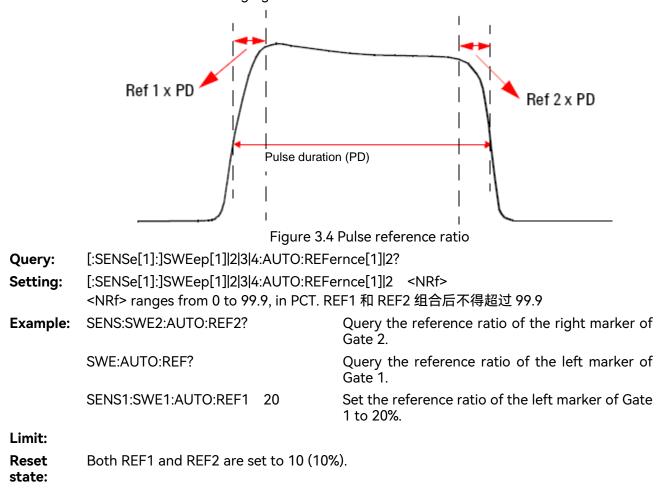
Function:	Based on the fact that power is proportional to the square of voltage, the two units can be converted to each other, e.g.,	
Query	for a voltage with a midpoint of 50% (0.5), the conversion to a power is 25% (0.25).	
Query:	[:SENSe[1]:]PULSe:UNIT?	
Setting:	[:SENSe[1]:]PULSe:UNIT <watts volts 0 1 ></watts volts 0 1 >	
	WATTS or 0: set to power unit	
	VOLTS or 1: set to voltage unit	
Example:	SENS:PULS:UNIT?	Query the unit of pulse definition.
	PULS:UNIT 1	Set the unit of pulse definition to "voltage".
Limit:	None.	
Reset state:	The unit of pulse definition is set to po	wer.

3.3 Instrument Subsystem Command [:SENSe[1]:]SWEep:APERture

Function:	The relevant command is: [:SENSe[1]:]	
Query:	[:SENSe[1]:]SWEep:APERture? [MIN MAX]	
Setting:	[:SENSe[1]:]SWEep:APERture <numerical <="" strain="" td=""> Valid values for numeric data are: DE used for setting only. <nrf> ranges from 20e-6 to 1, in second DEF is 50ms, MIN is 20us, MAX 为 1s.</nrf></numerical>	F, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
Example:	SENS:SWE:APER?	Query the current measured aperture.
	SWE:APER 1e-3	Set the measurement aperture to 1ms
Limit:		
Reset state:	OFF	
Error message:		

[:SENSe[1]:]SWEep:APERture:AUTO

Function:	Query or set the auto-measurement aperture or measurement interval state. If it is set to auto-measurement aperture, the measured aperture value will be automatically selected according to the measurement speed, and the corresponding relationship is as follows:		
	Normal measurement speed, with an a	•	
	Doubled measurement speed with an		
	Fast measurement speed with an aperture of 250us ((SENS:DET:FUNC) for "AVER"); with an aperture of 20us ((SENS:DET:FUNC) for "NORM");		
Query:	[:SENSe[1]:]SWEep:APERture:AUTO		
Setting:	[:SENSe[1]:]SWEep:APERture:AUTO <boolean data=""> Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean></boolean>		
Example:	SENS:SWE:APER:AUTO?	Query the current auto-measurement aperture state.	
	SWE:APER:AUTO 1	Set to auto-measurement aperture	
Limit:			
Reset state:	50ms		
Error message:			
[:SENSe[[*]	ENSe[1]:]SWEep[1] 2 3 4:AUTO		
Function:	Query or set the automatic gate state	of the specified gate.	


Query: [:SENSe[1]:]SWEep[1]|2|3|4:AUTO?

Return 0 or 1.0 means the automatic gate is closed; 1 means the automatic gate is open.

		3.3 Instrument Subsystem Command
Setting:	[:SENSe[1]:]SWEep[1] 2 3 4:AUTO <b Valid forms of <boolean data=""> are: 0, 0 OFF or 0: Close the automatic gate; ON or 1: Open the automatic gate;</boolean></b 	oolean data> ONCE 2
	ONCE or 2: Trigger the automatic gate	once, then close it.
Example:	SENS:SWE2:AUTO?	Query the automatic gate state of Gate 2.
	SENE1:SWE1:AUTO ON	Set Gate 1 as automatic gate opening.
	SWE:AUTO ONCE	Trigger the automatic gate 1 once, then close the automatic gate.
Limit:		
Reset state:	Automatic gate set to OFF	
Error message:		

[:SENSe[1]:]SWEep[1]|2|3|4:AUTO:REFernce[1]|2

Function: Query or set the reference ratio of the specified gate. REF1 and REF2 indicate the position reference ratio (relative to pulse duration) for Marker 1 and Marker 2, respectively. as shown in the following figure.

Error

message: If the sum of the left and right reference ratios set is greater than 99.9, the message "-222, "Data out of range"" will be displayed.

[:SENSe[1]:]SWEep[1]|2|3|4:OFFSet:TIME

Function:	Query or set the start time of the spec time 0 indicates the time of the trigge	cified gate. In this case, unless otherwise stated, r point.
Query:	[:SENSe[1]:]SWEep[1] 2 3 4:OFFSet:TIME? [MIN MAX]	
Setting:	[:SENSe[1]:]SWEep[1] 2 3 4:OFFSet:TIME <numeric data=""> Valid values for numeric data are: DEF, MIN, MAX, <nrf>, where DEF and <nrf> a used for setting only.</nrf></nrf></numeric>	
<nrf> ranges from -1 to 1, in seconds, and is related to the h base)</nrf>		ds, and is related to the horizontal scale (time
	DEF is 0,	
	The value of MIN is related to the time	e base,
	The value of MAX is related to the time base. in s.	
Example:	SENS:SWE2:OFFS:TIME?	Query the start time of Gate 2.
	SENS1:SWE1:OFFS:TIME?	Query the start time of Gate 1.
	SWE:OFFS:TIME? MAX	Query the maximum value of the settable start time of Gate 1.
	SENS:SWE:OFFS:TIME DEF	Set the start time of Gate 1 to 0 seconds.
	SENS:SWE2:OFFS:TIME 1e-6	Set the start time of Gate 2 to 1 μs_\circ
1		

Limit:

Reset state: Start time is set to 0 for all gates.

Error

message:

Description:

[:SENSe[1]:]SWEep[1]|2|3|4:TIME

Function:	Query or set the time length of the specified gate.	
Query:	[:SENSe[1]:]SWEep[1] 2 3 4:TIME? [N	1IN[MAX]
Setting:	[:SENSe[1]:]SWEep[1] 2 3 4:TIME <n< th=""><th>umeric data></th></n<>	umeric data>
	Valid values for numeric data are: DE used for setting only.	F, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf>
	<nrf> ranges from 0 to 1, in secon base),</nrf>	ds, and is related to the horizontal scale (time
	DEF is 0,	
	MIN is 0,	
	MAX 为 1.	
Example:	SENS:SWE2:TIME?	Query the time length of Gate 2.
	SENS1:SWE1:TIME?	Query the time length of Gate 1.
	SWE:TIME? MAX	Query the maximum value of the settable time duration of Gate 1.
	SENS:SWE:TIME DEF	Set the time length of Gate 1 to 100 μs_{\circ}
	SENS:SWE2:TIME 1e-6	Set the time length of Gate 2 to 1 μs_\circ

Limit:

Reset state: The time duration of Gate 1 is set to 100µs and the others are 0.

Error

message:

Description:

[:SENSe[1]:]TRACe:AUToscale

Function: Automatic setting.

Automatically adjust the vertical scale, vertical offset, trigger level, time base and other measurement paraMeter of channel 1 and channel 2, and find the trigger event at the currently set trigger source. In the case of a valid trigger, the automatic setting is able to display the entire amplitude of the pulse and at least one full period, ensuring the valid calculation of the automatic measurement paraMeter.

Set Channel A automatically.

Automatic setting.

Query: Not supported

Setting: [:SENSe[1]:]TRACe:AUToscale

Example: TRAC:AUT

SENS:TRAC:AUT

Limit:

Error If the given channel is not triggered continuously, it prompts "-221, "Settings conflict"". **message:**

ResetThe vertical scale is set to 10dB/div.; the horizontal scale (time base) is set to 10us/div.state:and the trigger level is set to -5dBm.

[:SENSe[1]:]TRACe:OFFSet:TIME

Function: Query: Setting:	Query or set the horizontal start time of the trace. [:SENSe:]TRACe:OFFSet:TIME? [MIN MAX] [:SENSe:]TRACe:OFFSet:TIME <numeric data=""> Valid values for numeric data are: DEF, MIN, MAX, <nrf>, where DEF and <nrf> are used for setting only. <nrf> ranges from -1 to 1, in seconds, DEF is 0, MIN is -1,</nrf></nrf></nrf></numeric>	
	MAX 为 1.	
Example:	SENS:TRAC:OFFS:TIME?	Query the horizontal start time of the trace.
	TRAC:OFFS:TIME? MAX	Query the horizontal start time of the maximum settable trace.
	SENS1:TRAC:OFFS:TIME 1e-06	Set the horizontal start time of the trace to 1 $\mbox{$\mu$s.}$
Limit:		
Description:		
Error message:	If the current trigger source is EXT, it prompts "-221, "Settings conflict""; If the current measurement mode is "AVER", it prompts "-221, "Settings conflict""; If the current trace measurement enable switch is OFF, it prompts "-221, "Settings conflict"";	

Reset state: Horizontal start time is set to 0.

3.3 Instrument Subsystem Command [:SENSe[1]:]TRACe:TIME

Function:	Query or set the time length of the trace.		
Query:	[:SENSe[1]:]TRACe:TIME? [MIN MAX]		
Setting:	[:SENSe[1]:]TRACe:TIME <numeric data=""> Valid values for numeric data are: DEF, MIN, MAX, <nrf>, where DEF and <nrf> are used for setting only. <nrf> ranges from 100ns to 1, in seconds, DEF is 100µs,</nrf></nrf></nrf></numeric>		
	MIN is 20ns, MAX为1s.		
Example:	SENS:TRAC:TIME?	Query the time duration of the trace.	
	TRAC:TIME? MAX	Query the time duration of the maximum settable trace.	
	SENS1:TRAC:TIME 1e-06	Set the time duration of the trace to 1 μ s.	
Limit:			
Description:			

Description:

Error

message:

Reset state: The time duration is set to 100 μ s.

[:SENSe[1]:]TRACe:UNIT

Function:	Query or set the trace unit.		
Query:	[:SENSe[1]:]TRACe:UNIT?		
Setting:	[:SENSe[1]:]TRACe:UNIT < dBm W 0 1>		
Example:	SENS:TRAC:UNIT?	Query the trace unit.	
	TRAC:UNIT W	Set the trace unit to W.	
Limit:			

Reset The trace unit is set to dBm.

state:

[:SENSe[1]:]TRACe:X:SCALe:PDIV

Function:	Query or set the horizontal scale (i.e. time base).			
Query:	[:SENSe[1]:]TRACe:X:SCALe:PDIV?	[MIN MAX]		
Setting:	[:SENSe[1]:]TRACe:X:SCALe:PDIV Valid values for numeric data are: [<numeric data=""> DEF, MIN, MAX, <nrf>, where DEF and <nrf> are</nrf></nrf></numeric>		
	used for setting only.			
	<nrf> ranges from 1e-8 to 0.1, in s</nrf>	,		
	DEF is 10us,			
	MIN is 10ns,			
	MAX is 100ms.			
	For 2438, the horizontal scale is in specify any value within the valid ra	1-2-5 steps; for 87234, the horizontal scale can nge.		
Example:	SENS:TRAC:X:SCAL:PDIV?	Query the horizontal scale.		
	TRAC:X:SCAL:PDIV 1e-8	Set the horizontal scale of Channel A to 10ns.		

Limit:

Description:

Error If the waveform is not currently displayed, it prompts "-221, "Settings conflict"". **message:**

Reset state: The horizontal scale is set to 10us.

3.3.9 Status Subsystem Command (STATus)

The Status subsystem command detects the status of the 87234 by monitoring the Device Status Register, the Operational Status Register, and the Questionable Question Register.

Table 3.10 Commands or events affecting the status	register
--	----------

Status Register	*RST	*CLS	Start up	STATus:PRESet
SCPI transition filter (NTR and PTR)	No effect	No effect	Preset	Preset
SCPI enable register	No effect	No effect	Preset	Preset
SCPI event register	No effect	Clear	Clear	No effect
SCPI error/event queue enable	No effect	No effect	Preset	Preset
SCPI error/event queue	No effect	Clear	Clear	No effect
IEEE488.2 Register ESE SRE	No effect	No effect	Clear	No effect
IEEE488.2 Register SESR STB	No effect	Clear	Clear	No effect

Preset status description: The preset value of PTR is 0x7fff (32767); both NTR and enable registers are cleared.

3.3.10.1 Command Sets

The content of the state register can be queried or set with the following command set:

:CONDition?

Query the value of the condition register of the state register. The return format is < NR1 > . The range is from 0 to 32767. After the query, the value of the condition register remains unchanged.

:ENABle <NRf>|<non-decimal number>

Query or set the event enable register of the state register, and the highest bit (bit15) is always 0.

[:EVENt?]

Query the event register of the state register, and clear the register after the query.

:NTRansition <NRf>|<non-decimal number>

Query or set the negative transition filter of the state register, and the highest bit is always 0.

:PTRansition <NRf>|<non-decimal number>。

Query or set the positive transition filter of the state register, and the highest bit is always 0.

The status registers supported in this case are

STATus:DEVice

STATus:OPERation

3.3 Instrument Subsystem Command

STATus:OPERation:CALibrating[:SUMMary]

STATus:OPERation:LLFail[:SUMMary]

STATus:OPERation:SENSe[:SUMMary]

STATus:OPERation:TRIGger[:SUMMary]

STATus:OPERation:ULFail[:SUMMary]

STATus:QUEStionable

STATus:QUEStionable

STATus:QUEStionable:CALibration[:SUMMary]

STATus:QUEStionable:POWer[:SUMMary]

For example:

:CONDition?can be used to query the calibration operation registerSTATus:OPERation:CALibrating[:SUMMary]

STATus:OPERation:CALibrating[:SUMMary]:CONDition?

The :ENABle can be used to query or set the calibration operation register STATus:OPERation:CALibrating[:SUMMary]

STATus:OPERation:CALibrating[:SUMMary]:ENABle

3.3.10.2 Transition Filter

Refer to Section 9.2 of SCPI-99 for a description of the transition filter. A brief description is given below.

1) Positive transition (PTR): When the condition is set to TRUE by the FALSE event.

2) Negative transition (NTR): When the condition goes from TRUE to FALSE, the event is set to TRUE.

3) Positive transition or negative transition: The event is set to TRUE when the condition goes from FALSE to TRUE or TRUE to FALSE.

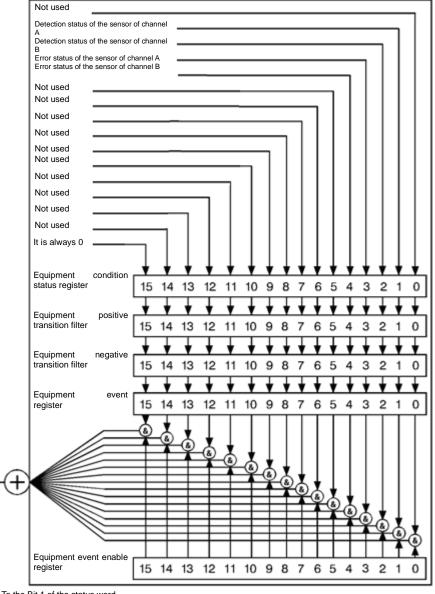
4) Clearing the positive transition and negative transition registers will disable event reporting.

3.3.10.3 Device Status Register Description (STATus:DEVice)

Table 3.11 Device Status Register Description

Bit	Value	Definition
0	1	Unused
1	2	Channel A detection state
2	4	Channel B detection state (for dual-channel only)
3	8	Channel A error state
4	16	Channel B error state (for dual-channel only)
5	32	USB channel detection state (reserved)
6	64	USB channel error state (reserved)
714	-	Unused
15	-	Always 0

1) Bits 1 and 2 indicate the detection state of Channel A and Channel B, respectively.


a) Return value of STATus:DEVice:CONDition?: 1 indicates that it is detected, and 0 indicates that it is not detected.

b) Return value of STATus:DEVice[:EVENt]?: 1 indicates that a connection or removal event has occurred. 0 means not occurred. After the query, the event register will be cleared.

c) When STATus:DEVice:NTRansition is set to 1, STATus:DEVice[:EVENt] will be set to 1 if shiftis detected.

d) When STATus:DEVice:PTRansition is set to 1, STATus:DEVice[:EVENt] will be set to 1 if access is detected.

2) Bits 3 and 4 indicate errors for Channel A and Channel B of the 87234, respectively. 1 means error, and 0 means no error found.

To the Bit 1 of the status word

Figure 3.5 Device status register

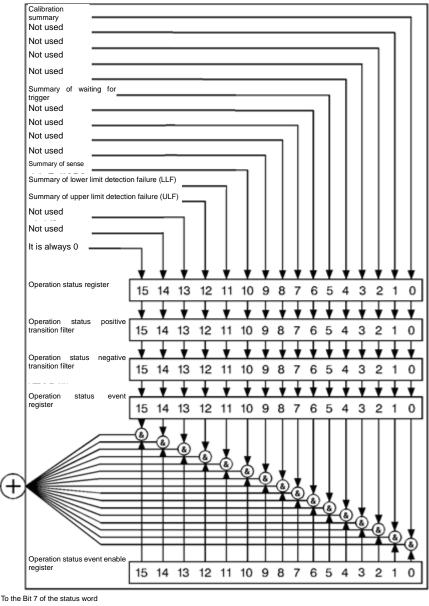
3.3.10.4 Operation Status Register Description (STATus:OPERation)

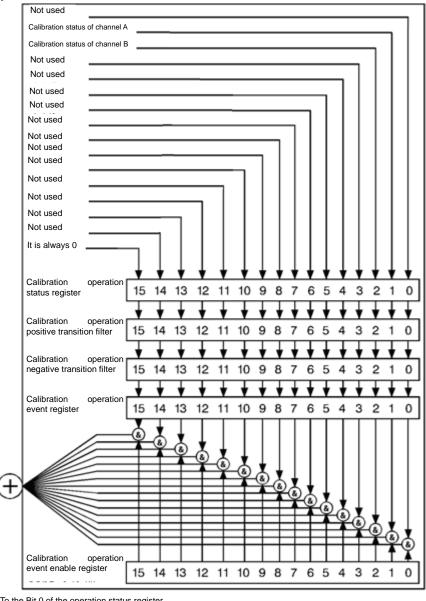
 Table 3.12
 Operation status register description

Bit	Value	Definition
0	1	Calibration Summary
14	-	Unused
5	32	Wait for Trigger Summary
69	-	Unused
10	1024	Sensing Summary
11	2048	Lower-Limit Detection Failure Summary (LLF)
12	4096	Upper-Limit Detection Failure Summary (ULF)
1314	-	Unused
15	-	Always 0

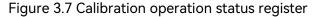
Six groups of operation registers are included:

- STATus:OPERation
- STATus:OPERation:CALibrating[:SUMMary]
- STATus:OPERation:LLFail[:SUMMary]
- STATus:OPERation:SENSe[:SUMMary]
- STATus:OPERation:TRIGger[:SUMMary]
- STATus:OPERation:ULFail[:SUMMary]




Figure 3.6 Operation status register description

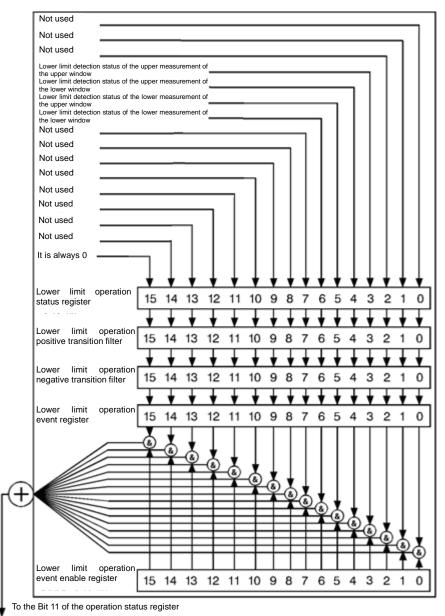
3.3.10.5 Calibration Operation Status Register Description (STATus:OPERation:CALibrating[:SUMMary])


Table 3.13	Calibration	Operation	Status Re	eaister	Description
				- 3	

Bit	Value	Definition	
0	1	Unused	
1	2	Channel A calibration status.	
2	4	Channel B calibration status. (for dual-channel only)	
314	-	Unused	
15	-	Always 0	

Bit 1 and bit 2 indicate the calibration status of Channel A and Channel B respectively. 1 indicates that it is being zeroed or calibrated, and 0 indicates that the calibration is completed or not zeroed or calibrated.

To the Bit 0 of the operation status register



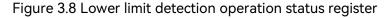
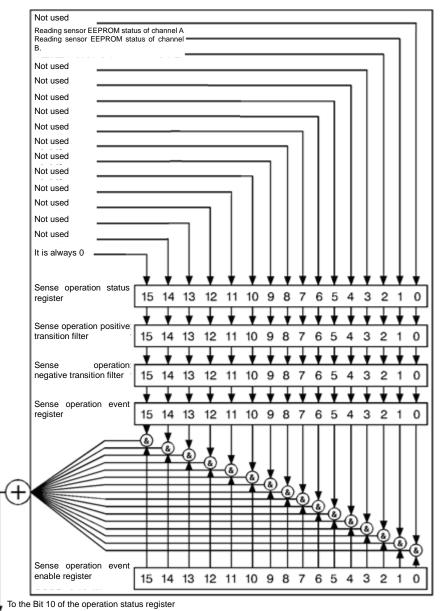

3.3.10.6 Lower Limit Status Register Description (STATus:OPERation:CALibrating[:SUMMary])

Table 3.14 Lower Limit Detection Operation Status Register Description

Bit	Value	Definition
02	-	Unused
3	8	Lower limit detection state of Measurement 1
4	16	Lower limit detection state of Measurement 2
5	32	Lower limit detection state of Measurement 3
6	64	Lower limit detection state of Measurement 4
714	-	Unused
15	-	Always 0

Bit 3 to bit 6 indicates the lower limit failure detection status of the corresponding measurement. 1 indicates that the lower limit is exceeded

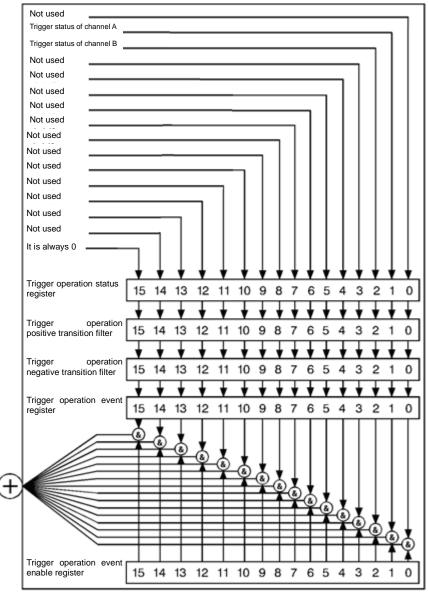


3.3.10.7 Sensing Operation Status Register Description (STATus:OPERation: SENSe[:SUMMary])

Table 3.15	Sensing operation	n status register	description
------------	-------------------	-------------------	-------------

Bit	Value	Definition	
0	1	Unused	
1	2	Channel A reads EEPROM status	
2	4	Channel B reads EEPROM status (for dual-channel only)	
314	-	Unused	
15	-	Always 0	

Bits 1 and 2 indicate that Channel A and Channel B read EEPROM status, respectively, and 1 indicates that the 87234 is being read.



3.3.10.8 Trigger Operation Status Register Description (STATus:OPERation TRIGger[:SUMMary])

Table 3.16	Trigger operat	ion status register	description

Bit	Value	Definition
0	1	Unused
1	2	Trigger operation status
2	4	Channel B trigger status (for dual-channel only)
314	-	Unused
15	-	Always 0

Bit 1 and bit 2 indicate the Wait for Trigger state of Channel A and Channel B respectively, and 1 indicates that it is in Wait for Trigger.

To the Bit 5 of the operation status register

3.3.10.9 Upper Limit Operation Status Register Description (STATus:OPERation:CALibrating[:SUMMary])

Table 3.17 Upper Limit Detection Operation Status Register Description

Bit	Value	Definition
02	-	Unused
3	8	Upper limit detection state of Measurement 1
4	16	Upper limit detection state of Measurement 2
5	32	Upper limit detection state of Measurement 3
6	64	Upper limit detection state of Measurement 4

3.3 Instrument Subsystem Command		
714	-	Unused
15	-	Always 0

Bit 3 to bit 6 indicates the upper limit failure detection status of the corresponding measurement. 1 indicates that the upper limit is exceeded

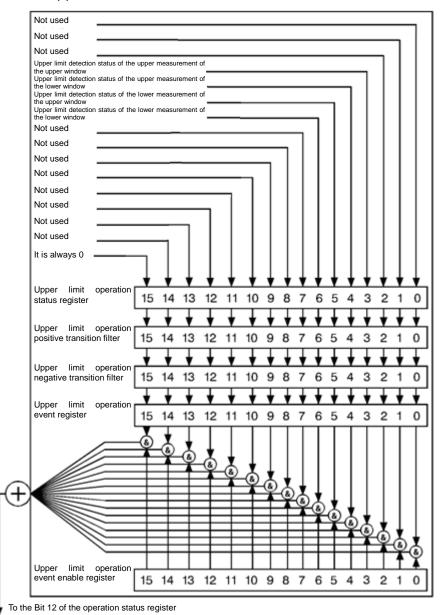
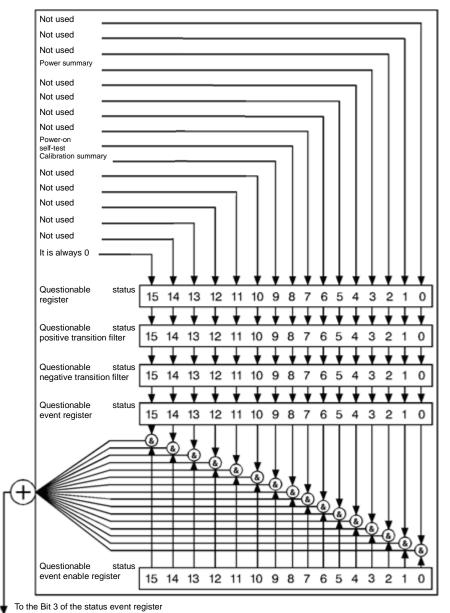


Table 3.11 Upper limit detection operation status register

3.3.12.10 Question Status Register Description (STATus: QUEStionable)

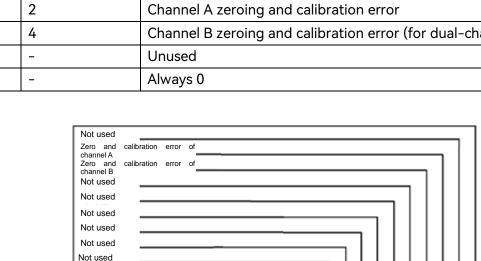

Bit	Value	Definition
0-2	-	Unused
3	8	Power Summary
4-7	_	Unused

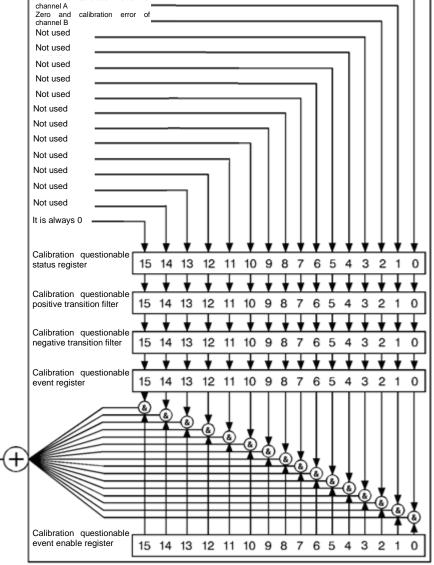
106

			3.3 Instrument Subsystem Command
8	256	Calibration Summary	
9	512	Power-on self-test	
10-14	-	Unused	
15	-	Always 0	

Three groups of operation registers are included:

- STATus:QUEStionable
- STATus:QUEStionable:Power[:SUMMary]
- STATus:QUEStionable:CALibration[:SUMMary]





3.3.10.11 Calibration Question Operation Status Register Description (STATus QUEStionable:CALibrating[:SUMMary])

3.3 Instrument Subsystem Command

Table 3.19 Question Question Status Register Description		
Bit	Value	Definition
0	1	Unused
1	2	Channel A zeroing and calibration error
2	4	Channel B zeroing and calibration error (for dual-channel only)
314	-	Unused
15	-	Always 0

To the Bit 8 of the questionable status register

Figure 3.13 Calibration question status register

3.3.10.12PowerQuestion3.3 Instrument Subsystem Command(STATus:QUEStionable:POWer[:SUMMary])RegisterDescription

Table 3.20 Power	Ouestion	Status Register Description	

Bit	Value	Definition
0	1	Unused
1	2	Channel A input is overloaded
2	4	Channel B input overload (for dual-channel only)
3	8	Channel A needs to be zeroed
4	16	Channel B needs to be zeroed (for dual-channel only)
5	32	Measurement 1 data is invalid, or logarithmically incorrect
6	64	Measurement 2 data is invalid, or logarithmically incorrect
7	128	Measurement 3 data is invalid, or logarithmically incorrect
8	256	Measurement 4 data is invalid, or logarithmically incorrect
914	-	Unused
15	-	Always 0

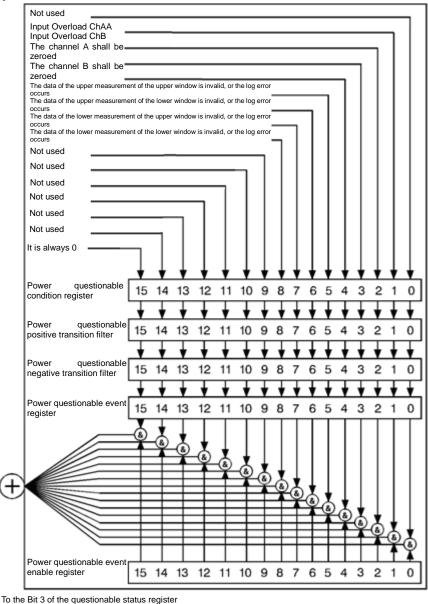


Figure 3.14 Power question status register

:STATus:DEVice:CONDition?

- Function: Query the value in the device status condition register.
- **Query:** :STATus:DEVice:CONDition?
- Setting: Not supported
- Example: STAT:DEV:COND?

:STATus:DEVice:ENABle

- **Function:** Query or set the device status event enable register. Operate by bit. 0 means that reporting status events to bit 1 (Bit1) of the higher level status word is disabled. 1 indicates enable.
- Query: :STATus:DEVice:ENABle?
- **Setting:** :STATus:DEVice:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.

			3.3 Instrument Subsystem Command
Example:	STAT:DEV:ENAB?		Query the device status event enable register.
	STAT:DEV:ENAB	6	Enable bit 1 and bit 2, which allows reporting of the 87234 detection events to the status word.
	STAT:DEV:ENAB	#B0110	The meaning is the same as above, using binary numbers.
	STAT:DEV:ENAB	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:DEVice[:EVENt]?

Function: Query the device event register. After the query, 87234 automatically clears the register.

- **Query:** :STATus:DEVice[:EVENt]?
- Setting: Not supported

Example: STAT:DEV?

:STATus:DEVice:NTRansition

- Function: Query or set the negative transition filter of the device.
- **Query:** :STATus:DEVice:NTRansition?
- **Setting:** :STATus:DEVice:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:DEV:NTR?

STAT:DEV:NTR #H06	Negative transition filters the status of bit 1 and bit 2 into the event register.
STAT:DEV:NTR #B0110	The meaning is the same as above, using binary numbers.
STAT:DEV:NTR 6	The meaning is the same as above, using decimal numbers.

:STATus:DEVice:PTRansition

- Function: Query or set the positive transition filter of the device.
- **Query:** :STATus:DEVice:PTRansition?
- **Setting:** :STATus:DEVice:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.

Example:	STAT:DEV:PTR?		
	STAT:DEV:PTR	#H06	Positive transition filters the status of bit 1 and bit 2 into the event register.
	STAT:DEV:PTR	#B0110	The meaning is the same as above, using binary numbers.
	STAT:DEV:PTR	6	The meaning is the same as above, using decimal numbers.

:STATus:OPERation:CALibrating[:SUMMary]:CONDition?

- Function: Query the value in the calibration operation status condition register. In the return value, if bit 1 is non-zero, it indicates that Channel A is being zeroed or calibrated; if bit 2 is non-zero, it indicates that Channel B is being zeroed or calibrated. For example, returning 2 indicates that Channel A is being zeroed or calibrated.
- **Query:** :STATus:OPERation:CALibrating[:SUMMary]:CONDition?

3.3 Instrument Subsystem Command

Setting: Not supported

Example: STAT:OPER:CAL:COND?

:STATus:OPERation:CALibrating[:SUMMary]:ENABle

- **Function:** Query or set the calibration operation event enable register. Operate by bit. 0 means that reporting of status events to bit 0 (Bit0) of the operation status is disabled. 1 indicates enable.
- Query: :STATus:OPERation:CALibrating[:SUMMary]:ENABle?
- **Setting:** :STATus:OPERation:CALibrating[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example:
 STAT:OPER:CAL:ENAB?

 STAT:OPER:CAL:ENAB
 6

 Enable bit 1 and bit 2, which allows reporting of calibration operation events to the operation status.

 STAT:OPER:CAL:ENAB
 #B0110

 STAT:OPER:CAL:ENAB
 #B0110

 STAT:OPER:CAL:ENAB
 #B0110

 The meaning is the same as above, using binary numbers.

 STAT:OPER:CAL:ENAB
 #H06

:STATus:OPERation:CALibrating[:SUMMary][:EVENt]?

- **Function:** Query the calibration operation event register. After the query, 87234 automatically clears the register.
- Query: :STATus:OPERation:CALibrating[:SUMMary][:EVENt]?
- Setting: Not supported

Example: STAT:OPER:CAL?

:STATus:OPERation:CALibrating[:SUMMary]:NTRansition

- **Function:** Query or set the negative transition filter for calibration operation.
- Query: :STATus:OPERation:CALibrating[:SUMMary]:NTRansition?
- Setting: :STATus:OPERation:CALibrating[:SUMMary]:NTRansition

The parameter range is from 0 to 32767.

Example: STAT:OPER:CAL:NTR?

STAT:OPER:CAL:NTR 6	Negative transition filters the status of bit 1 and bit 2 into the event register.
STAT:OPER:CAL:NTR #B0110	The meaning is the same as above, using binary numbers.
STAT:OPER:CAL:NTR #H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:CALibrating[:SUMMary]:PTRansition

- **Function:** Query or set the positive transition filter for calibration operation.
- Query: :STATus:OPERation:CALibrating[:SUMMary]:PTRansition?
- **Setting:** :STATus:OPERation:CALibrating[:SUMMary]:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:CAL:PTR?

STAT:OPER:CAL:PTR	6	3.3 Instrument Subsystem Command Positive transition filters the status of bit 1 and bit 2 into the event register.
STAT:OPER:CAL:PTR	#B0110	The meaning is the same as above, using binary numbers.
STAT:OPER:CAL:PTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:CONDition?

Function: Query the value in the operation status condition register.

In the return value, if bit 0 is non-zero, a calibration event is detected; if bit 5 is non-zero, a wait-for-trigger event is detected; if bit 10 is non-zero, an access to or removal event from 87234 is detected; if bit 11 is non-zero, a lower limit detection event is detected; if bit 12 is non-zero, an upper limit detection event is detected.

For example, if a calibration event is detected by this set of registers, the corresponding bits of the calibration operation enable registers (STAT:OPER:CAL:ENAB) need to be set to non-zero. Others are the same.

- Query: :STATus:OPERation:CONDition?
- Setting: Not supported
- **Example:** STAT:OPER:COND?

:STATus:OPERation:ENABle

- **Function:** Query or set the operation status event enable register. Operate by bit. 0 means that reporting status events to bit 7 (Bit7) of the status word is disabled. 1 indicates enable.
- Query: :STATus:OPERation:ENABle?

Setting: :STATus:OPERation:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.

Example: STAT:OPER:ENAB? STAT:OPER:ENAB 1

STAT:OPER:ENAB #B0001

STAT:OPER:ENAB #H01

The meaning is the same as above, using hexadecimal numbers.

events into the status word.

Enable bit 1, which allows reporting of operation

The meaning is the same as above, using binary

:STATus:OPERation[:EVENt]?

Function: Query the operation status event register. After the query, 87234 automatically clears the register.

numbers.

- **Query:** :STATus:OPERation[:EVENt]?
- Setting: Not supported

Example: STAT:OPER?

:STATus:OPERation:NTRansition

Function: Query or set the negative transition filter for operation state.

Query: :STATus:OPERation:NTRansition?

- **Setting:** :STATus:OPERation:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:NTR?

3.3

B Instrument Subsystem Command				
STAT:OPER:NTR 1	Negative transition filters the status of bit 0 into the event register.			
STAT:OPER:NTR #B0001	The meaning is the same as above, using binary numbers.			
STAT:OPER:NTR #H01	The meaning is the same as above, using hexadecimal numbers.			

:STATus:OPERation:PTRansition

Function: Query or set the positive transition filter for operation state.

- Query: :STATus:OPERation:NTRansition?
- **Setting:** :STATus:OPERation:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:OPER:NTR?

STAT:OPER:NTR #H06Positive transition filters the status of bit 1 and
bit 2 into the event register.STAT:OPER:NTR #B0110The meaning is the same as above, using binary
numbers.STAT:OPER:NTR 6The meaning is the same as above, using
decimal numbers.

:STATus:OPERation:LLFail[:SUMMary]:CONDition?

Function: Query the value in the lower limit detection operation status condition register.

In the return value, if bit 3 is non-zero, it indicates that the lower limit detection operation failure status of Measurement 1; if bit 4 is non-zero, it indicates that the lower limit detection operation failure status of Measurement 2; if bit 5 is non-zero, it indicates that the lower limit detection operation failure status of Measurement 3; if bit 6 is non-zero, it indicates that the lower limit detection operation failure status of Measurement 4.

- **Query:** :STATus:OPERation:LLFail[:SUMMary]:CONDition?
- Setting: Not supported
- Example: STAT:OPER:LLF:COND?

:STATus:OPERation:LLFail[:SUMMary]:ENABle

- **Function:** Query or set the event enable register for lower limit detection operation. Operate by bit. 0 means that reporting of status events to bit 11 (Bit11) of the operation status is disabled. 1 indicates enable.
- Query: :STATus:OPERation:LLFail[:SUMMary]:ENABle?
- **Setting:** :STATus:OPERation:LLFail[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:LLF:ENAB?

STAT:OPER:LLF:ENAB	8	Enable bit 3, which allows reporting of lower limit operation events to the operation status.
STAT:OPER:LLF:ENAB	#B1000	The meaning is the same as above, using binary numbers.
STAT:OPER:LLF:ENAB	#H08	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:LLFail[:SUMMary][:EVENt]?

- **Function:** Query the event register for lower limit detection operation. After the query, 87234 automatically clears the register.
- Query: :STATus:OPERation:LLFail[:SUMMary][:EVENt]?
- Setting: Not supported
- **Example:** STAT:OPER:LLF?

:STATus:OPERation:LLFail[:SUMMary]:NTRansition

- Function: Query or set the negative transition filter for lower limit detection operation.
- Query: :STATus:OPERation:LLFail[:SUMMary]:NTRansition?
- **Setting:** :STATus:OPERation:LLFail[:SUMMary]:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:OPER:LLF:NTR?

STAT:OPER:LLF:NTR 8		Negative transition filters the status of bit 3 into the event register.
STAT:OPER:LLF:NTR #		The meaning is the same as above, using binary numbers.
STAT:OPER:LLF:NTR #	¢H08	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:LLFail[:SUMMary]:PTRansition

- Function: Query or set the positive transition filter for lower limit detection operation.
- Query: :STATus:OPERation:LLFail[:SUMMary]:PTRansition?
- **Setting:** :STATus:OPERation:LLFail[:SUMMary]:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:LLF:PTR?

STAT:OPER:LLF:PTR	8	Positive transition filters the status of bit 3 into the event register.
STAT:OPER:LLF:PTR	#B1000	The meaning is the same as above, using binary numbers.
STAT:OPER:LLF:PTR	#H08	The meaning is the same as above, using decimal numbers.

:STATus:OPERation:SENSe[:SUMMary]:CONDition?

- Function:Query the value in the sensor operation status condition register.In the return value, if bit 1 is non-zero, it indicates that Channel A reads EEPROM status;If bit 2 is non-zero, it indicates that Channel B reads EEPROM status.
- Query: :STATus:OPERation:SENSe[:SUMMary]:CONDition?
- Setting: Not supported
- **Example:** STAT:OPER:SENS:COND?

:STATus:OPERation:SENSe[:SUMMary]:ENABle

- **Function:** Query or set the sensor operation event enable register. Operate by bit. 0 indicates that the sensing operation status event is disabled into bit 10 (Bit10) of the operation status. 1 indicates enable.
- **Query:** :STATus:OPERation:SENSe[:SUMMary]:ENABle?

3.3 Instrument Subsystem Command

- **Setting:** :STATus:OPERation:SENSe[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:OPER:SENS:ENAB?

STAT:OPER:SENS:ENAB 6	Enable bit 1 and bit 2, which allows reporting of sensing operation events to the operation status.
STAT:OPER:SENS:ENAB #B0110	The meaning is the same as above, using binary numbers.
STAT:OPER:SENS:ENAB #H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:SENSe[:SUMMary][:EVENt]?

- **Function:** Query the sensing operation event register. After the query, 87234 automatically clears the register.
- Query: :STATus:OPERation:SENSe[:SUMMary][:EVENt]?
- **Setting:** Not supported
- Example: STAT:OPER:SENS?

:STATus:OPERation:SENSe[:SUMMary]:NTRansition

- **Function:** Query or set the negative transition filter for sensing operation.
- **Query:** :STATus:OPERation:SENSe[:SUMMary]:NTRansition?
- **Setting:** :STATus:OPERation:SENSe[:SUMMary]:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:OPER:SENS:NTR?

STAT:OPER:SENS:NTR	6	Negative transition filters the status of bit 1 an bit 2 into the event register.	
STAT:OPER:SENS:NTR	#B0110	The meaning is the same as above, using binary numbers.	
STAT:OPER:SENS:NTR	#H06	The meaning is the same as above, using hexadecimal numbers.	

:STATus:OPERation:SENSe[:SUMMary]:PTRansition

- **Function:** Query or set the positive transition filter for sensing operation.
- **Query:** :STATus:OPERation:SENSe[:SUMMary]:PTRansition?
- **Setting:** :STATus:OPERation:SENSe[:SUMMary]:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:SENS:PTR?

STAT:OPER:SENS:PTR 6	Positive transition filters the status of bit 1 and bit 2 into the event register.
STAT:OPER:SENS:PTR #B0110	The meaning is the same as above, using binary numbers.
STAT:OPER:SENS:PTR #H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:TRIGger[:SUMMary]:CONDition?

Function: Query the value in the trigger operation status condition register.

In the return value, if bit 1 is non-zero, it indicates that Channel A is in Wait for Trigger; If bit 2 is non-zero, it indicates that Channel B is in Wait for Trigger. For example, returning 2 indicates that Channel A is in Wait for Trigger.

- **Query:** :STATus:OPERation:CALibrating[:SUMMary]:CONDition?
- Setting: Not supported
- Example: STAT:OPER:CAL:COND?

:STATus:OPERation:TRIGger[:SUMMary]:ENABle

- **Function:** Query or set the trigger operation event enable register. Operate by bit. 0 means that reporting of status events to bit 5 (Bit5) of the operation status is disabled. 1 indicates enable.
- **Query:** :STATus:OPERation:TRIGger[:SUMMary]:ENABle?
- **Setting:** :STATus:OPERation:TRIGger[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:OPER:TRIG:ENAB?

STAT:OPER:TRIG:ENAB 6	Enable bit 1 and bit 2, which allows reporting of trigger operation events to the operation status.	
STAT:OPER:TRIG:ENAB #B0110	The meaning is the same as above, using binary numbers.	
STAT:OPER:TRIG:ENAB #H06	The meaning is the same as above, using hexadecimal numbers.	

:STATus:OPERation:TRIGger[:SUMMary][:EVENt]?

- **Function:** Query the trigger operation event register. After the query, 87234 automatically clears the register.
- **Query:** :STATus:OPERation:TRIGger[:SUMMary][:EVENt]?
- **Setting:** Not supported
- Example: STAT:OPER:TRIG?

:STATus:OPERation:TRIGger[:SUMMary]:NTRansition

- **Function:** Query or set the negative transition filter for trigger operation.
- Query: :STATus:OPERation:TRIGger[:SUMMary]:NTRansition?
- **Setting:** :STATus:OPERation:TRIGger[:SUMMary]:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.

Example:	STAT:OPER:TRIG:NTR?		
	STAT:OPER:TRIG:NTR	6	Negative transition filters the status of bit 1 and bit 2 into the event register.
	STAT:OPER:TRIG:NTR	#B0110	The meaning is the same as above, using binary numbers.
	STAT:OPER:TRIG:NTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:TRIGger[:SUMMary]:PTRansition

- **Function:** Query or set the positive transition filter for trigger operation.
- **Query:** :STATus:OPERation:TRIGger[:SUMMary]:PTRansition?
- Setting: :STATus:OPERation:TRIGger[:SUMMary]:PTRansition <NRf>|<non-decimal number>

The parameter range is from 0 to 32767.

Example:	STAT:OPER:TRIG:PTR?		
	STAT:OPER:TRIG:PTR	6	Positive transition filters the status of bit 1 and bit 2 into the event register.
	STAT:OPER:TRIG:PTR	#B0110	The meaning is the same as above, using binary numbers.
	STAT:OPER:TRIG:PTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:ULFail[:SUMMary]:CONDition?

Function: Query the value in the upper limit detection operation status condition register.

In the return value, if bit 3 is non-zero, it indicates that the upper limit detection operation failure status of Measurement 1; if bit 4 is non-zero, it indicates that the upper limit detection operation failure status of Measurement 2; if bit 5 is non-zero, it indicates that the upper limit detection operation failure status of Measurement 3; if bit 6 is non-zero, it indicates that the upper limit detection operation failure status of Measurement 4.

- Query: :STATus:OPERation:ULFail[:SUMMary]:CONDition?
- Setting: Not supported
- STAT: OPER: ULF: COND? Example:

:STATus:OPERation:ULFail[:SUMMary]:ENABle

- Function: Query or set the event enable register for upper limit detection operation. Operate by bit. 0 means that reporting of status events to bit 12 (Bit12) of the operation status is disabled. 1 indicates enable.
- Query: :STATus:OPERation:ULFail[:SUMMary]:ENABle?
- Setting: :STATus:OPERation:ULFail[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- STAT: OPER: ULF: ENAB? Example:

Query the value of the upper limit detection operation event enable register. STAT: OPER: ULF: ENAB 8 Enable bit 3, which allows reporting of upper limit operation events to the operation status. STAT:OPER:ULF:ENAB #B1000 The meaning is the same as above, using binary numbers. The meaning is the same as above, using STAT: OPER: ULF: ENAB #H08 hexadecimal numbers.

:STATus:OPERation:ULFail[:SUMMary][:EVENt]?

- Function: Query the event register for upper limit detection operation. After the query, 87234 automatically clears the register.
- :STATus:OPERation:ULFail[:SUMMary][:EVENt]? Query:
- Setting: Not supported

Example: STAT:OPER:ULF?

:STATus:OPERation:ULFail[:SUMMary]:NTRansition

Function: Query or set the negative transition filter for upper limit detection operation.

:STATus:OPERation:ULFail[:SUMMary]:NTRansition? Query:

3.3 Instrument Subsystem Command

Setting: :STATus:OPERation:ULFail[:SUMMary]:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767. Example: STAT:OPER:ULF:NTR?

xample:	STAT:OPER:ULF:NTR?		
	STAT:OPER:ULF:NTR	8	Negative transition filters the status of bit 3 into the event register.
	STAT:OPER:ULF:NTR	#B1000	The meaning is the same as above, using binary numbers.
	STAT:OPER:ULF:NTR	#H08	The meaning is the same as above, using hexadecimal numbers.

:STATus:OPERation:ULFail[:SUMMary]:PTRansition

Function: Query or set the positive transition filter for upper limit detection operation.

- **Query:** :STATus:OPERation:ULFail[:SUMMary]:PTRansition?
- **Setting:** :STATus:OPERation:ULFail[:SUMMary]:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example:
 STAT:OPER:ULF:PTR?

 STAT:OPER:ULF:PTR
 8

 Positive transition filters the status of bit 1 and bit 2 into the event register.

 STAT:OPER:ULF:PTR
 #B1000

 STAT:OPER:ULF:PTR
 #B1000

 STAT:OPER:ULF:PTR
 #B1000

 The meaning is the same as above, using binary numbers.

 STAT:OPER:ULF:PTR
 #H08

:STATus:PRESet

- Function: Preset some status registers as follows, and other registers remain unchanged.
- Query: Not supported
- **Setting:** :STATus:PRESet

Example: STAT:PRES

Table 3.21Operation status register description

Register	Sub register	Preset status
OPERation	ENABle	All 0
	PTR	All 1
	NTR	All 0
QUEStionable	ENABle	All 0
	PTR	All 1
	NTR	All 0
Other	ENABle	All 0
	PTR	All 1
	NTR	All 0

:STATus:QUEStionable:CALibration[:SUMMary]:CONDition?

Function: Query the value in the calibration question status condition register.

3.3 Instrument Subsystem Command

In the return value, if bit 1 is non-zero, it indicates that Channel A is zeroed and calibrated incorrectly; if bit 2 is non-zero, it indicates that Channel B is zeroed or calibrated incorrectly. For example, returning 2 indicates that Channel A is zeroed or calibrated incorrectly.

- Query: :STATus:OPERation:CALibrating[:SUMMary]:CONDition?
- Setting: Not supported

Example: STAT:OPER:CAL:COND?

:STATus:QUEStionable:CALibration[:SUMMary]:ENABle

- **Function:** Query or set the calibration question event enable register. Operate by bit. 0 indicates that reporting status events to bit 8 (Bit8) of the question status is disabled. 1 indicates enable.
- Query: :STATus:QUEStionable:CALibration[:SUMMary]:ENABle?
- **Setting:** :STATus:QUEStionable:CALibration[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:QUES:CAL:ENAB? STAT:OUES:CAL:ENAB

STAT:QUES:CAL:ENAB 6	Enable bit 1 and bit 2, which allows reporting of calibration question events to the question status.
STAT:QUES:CAL:ENAB #B0110	The meaning is the same as above, using binary numbers.
STAT:QUES:CAL:ENAB #H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:CALibration[:SUMMary][:EVENt]?

- **Function:** Query the calibration question event register. After the query, 87234 automatically clears the register.
- Query: :STATus:QUEStionable:CALibration[:SUMMary][:EVENt]?
- Setting: Not supported
- Example: STAT:QUES:CAL?

:STATus:QUEStionable:CALibration[:SUMMary]:NTRansition

- **Function:** Query or set the negative transition filter for calibration question.
- **Query:** :STATus:QUEStionable:CALibration[:SUMMary]:NTRansition?
- Setting: :STATus:QUEStionable:CALibration[:SUMMary]:NTRansition <NRf>|<non-decimal number>

The parameter range is from 0 to 32767.

Example: STAT:QUES:CAL:NTR?

STAT:QUES:CAL:NTR	6	Negative transition filters the status of bit 1 and bit 2 into the event register.
STAT:QUES:CAL:NTR	#B0110	The meaning is the same as above, using binary numbers.
STAT:QUES:CAL:NTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:CALibration[:SUMMary]:PTRansition

Function: Query or set the positive transition filter for calibration question.

3.3 Instrument Subsystem Command

- **Query:** :STATus:QUEStionable:CALibration[:SUMMary]:PTRansition?
- Setting: :STATus:QUEStionable:CALibration[:SUMMary]:PTRansition <NRf>|<non-decimal number>

The parameter range is from 0 to 32767.

Example: STAT:QUES:CAL:PTR?

-	· · · · · · · · · · · · · · · · · · ·		
	STAT:QUES:CAL:PTR	6	Positive transition filters the status of bit 1 and bit 2 into the event register.
	STAT:QUES:CAL:PTR	#B0110	The meaning is the same as above, using binary numbers.
	STAT:QUES:CAL:PTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:CONDition?

Function: Query the value in the question status condition register.
 In the return value, if bit 3 is non-zero, it indicates that a power question event is detected; if bit 8 is non-zero, it indicates that a calibration question event is detected; if bit 9 is non-zero, it indicates that the power-on self-test failed.
 For example, if a calibration question event is detected by this set of registers, the

corresponding bit of the calibration question event is detected by this set of registers, the corresponding bit of the calibration question enable register (STAT:QUES:CAL:ENAB) needs to be set non-zero. Others are the same.

Query: :STATus:QUEStionable:CONDition?

Setting: Not supported

Example: STAT:QUES:COND?

:STATus:QUEStionable:ENABle

- **Function:** Query or set the question status event enable register. Operate by bit. 0 means that reporting status events to bit 3 (Bit3) of the status word is disabled. 1 indicates enable.
- Query: :STATus:QUEStionable:ENABle?
- **Setting:** :STATus:QUEStionable:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:QUES:ENAB?

•	•		
	STAT:QUES:ENAB 8	8	Enable bit 1, which allows reporting of calibration question events into the status word.
	STAT:QUES:ENAB	#B1000	The meaning is the same as above, using binary numbers.
	STAT:QUES:ENAB	#H08	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable[:EVENt]?

- **Function:** Query the question status event register. After the query, 87234 automatically clears the register.
- Query: :STATus:QUEStionable[:EVENt]?

Setting: Not supported

Example: STAT:QUES?

:STATus:QUEStionable:NTRansition

Function: Query or set the negative transition filter for question status.

3.3 Instrument Subsystem Command

Query: :STATus:QUEStionable:NTRansition?

- **Setting:** :STATus:QUEStionable:NTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:QUES:NTR?

 · · · · · · · · · · · · · · · · · · ·		
STAT:QUES:NTR 8	3	Negative transition filters the status of bit 3 into the event register.
STAT:QUES:NTR	#B1000	The meaning is the same as above, using binary numbers.
STAT:QUES:NTR	#H08	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:PTRansition

- **Function:** Query or set the positive transition filter for question status.
- **Query:** :STATus:QUEStionable:PTRansition?
- **Setting:** :STATus:QUEStionable:PTRansition <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- Example: STAT:QUES:PTR? STAT:QUES:PTR 8

STAT:QUES:PTR #B0110

STAT:QUES:PTR #H08

The meaning is the same as above, using binary numbers. The meaning is the same as above, using

Positive transition filters the status of bit 3 into

he meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:POWer[:SUMMary]:CONDition?

Function: Query the value in the power question status condition register.

In the return value,

If bit 1 is non-zero, it indicates that the Channel A input is overloaded;

- If bit 2 is non-zero, it indicates that the Channel B input is overloaded;
- If bit 3 is non-zero, it indicates that the Channel A needs to be zeroed;

If bit 4 is non-zero, it indicates that the Channel B needs to be zeroed;

If bit 5 is non-zero, it indicates that the Measurement 1 data is invalid, or logarithmically incorrect;

the event register.

If bit 6 is non-zero, it indicates that the Measurement 2 data is invalid, or logarithmically incorrect;

If bit 7 is non-zero, it indicates that the Measurement 3 data is invalid, or logarithmically incorrect;

If bit 8 is non-zero, it indicates that the measurement 4 data is invalid, or logarithmically incorrect.

If, for example, 8 is returned, it indicates that Channel A needs to be zeroed.

- Query: :STATus:QUEStionable:POWer[:SUMMary]:CONDition?
- Setting: Not supported

Example: STAT:QUES:POW:COND?

:STATus:QUEStionable:POWer[:SUMMary]:ENABle

Function: Query or set the power question event enable register. Operate by bit. 0 indicates that reporting status events to bit 3 (Bit3) of the question status is disabled. 1 indicates

3.3 Instrument Subsystem Command

enable.

- **Query:** :STATus:QUEStionable:POWer[:SUMMary]:ENABle?
- **Setting:** :STATus:QUEStionable:POWer[:SUMMary]:ENABle <NRf>|<non-decimal number> The parameter range is from 0 to 32767.
- **Example:** STAT:QUES:POW:ENAB?

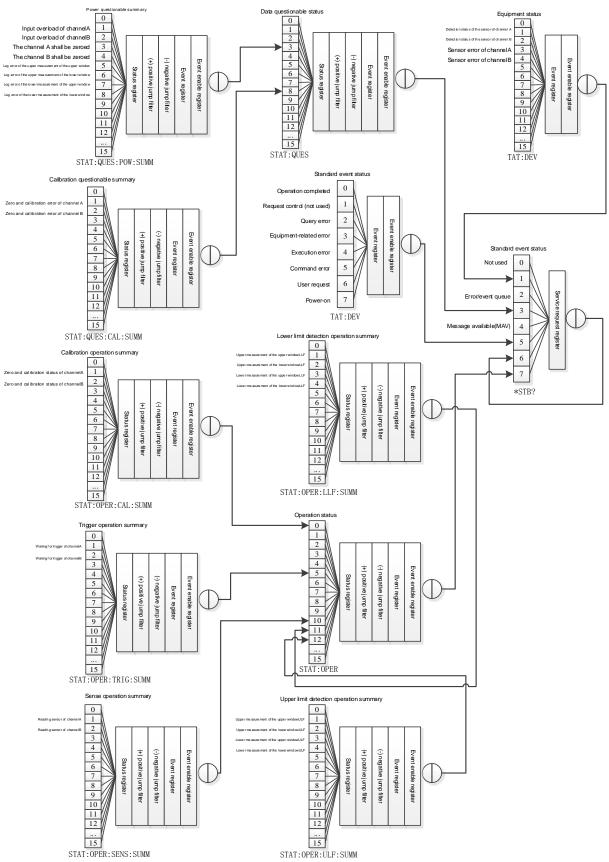
STAT:QUES:POW:ENAB 6	Enable bit 1 and bit 2, which allows reporting of power question events to the question status.
STAT:QUES:POW:ENAB #B0110	The meaning is the same as above, using binary numbers.
STAT:QUES:POW:ENAB #H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:POWer[:SUMMary][:EVENt]?

- **Function:** Query the power question event register. After the query, 87234 automatically clears the register.
- Query: :STATus:QUEStionable:POWer[:SUMMary][:EVENt]?
- Setting: Not supported
- **Example:** STAT:QUES:POW?

:STATus:QUEStionable:POWer[:SUMMary]:NTRansition

- **Function:** Query or set the negative transition filter for power question.
- Query: :STATus:QUEStionable:POWer[:SUMMary]:NTRansition?
- **Setting:** :STATus:QUEStionable:POWer[:SUMMary]:NTRansition <NRf>|< non decimal number > The parameter range is from 0 to 32767.
- Example: STAT:QUES:POW:NTR?


STAT:QUES:POW:NTR	6	Negative transition filters the status of bit 1 and bit 2 into the event register.
STAT:QUES:POW:NTR	#B0110	The meaning is the same as above, using binary numbers.
STAT:QUES:POW:NTR	#H06	The meaning is the same as above, using hexadecimal numbers.

:STATus:QUEStionable:POWer[:SUMMary]:PTRansition

- Function: Query or set the positive transition filter for power question.
- **Query:** :STATus:QUEStionable:POWer[:SUMMary]:PTRansition?
- **Setting:** :STATus:QUEStionable:POWer[:SUMMary]:PTRansition <NRf>|< non decimal number > The parameter range is from 0 to 32767.
- **Example:** STAT:QUES:POW:PTR?

•		
STAT:QUES:POW:PTR	6	Positive transition filters the status of bit 1 and bit 2 into the event register.
STAT:QUES:POW:PTR	#B0110	The meaning is the same as above, using binary numbers.
STAT:QUES:POW:PTR	#H06	The meaning is the same as above, using hexadecimal numbers.

Attachment: Status Block Diagram

3.3 Instrument Subsystem Command 3.3.10 System Subsystem Command (SYSTem)

:SYSTem:ERRor:CODE?

Function: Return the error code from the error queue of the 87234. When an error is generated, the error code is stored in the error queue. Every time this command is executed, this message will be removed from the error queue. The order of error messages out of the queue is first-in-first-out (FIFO), i.e., the oldest messages go out of the queue first. The error queue can be cleared with the *CLS command. Executing this command when the error queue is empty will return 0. The error queue can hold up to 1000 error messages.

Query: :SYSTem:ERRor:CODE?

- **Setting:** Not supported
- Example: SYST:ERR:CODE?
- Reset No effect.

state:

:SYSTem:ERRor[:NEXT]?

- **Function:** Return the error code and error message from the error queue of the 87234. When an error is generated, the error code and error message are stored in the error queue. Every time this command is executed, this message will be removed from the error queue. The order of error messages out of the queue is first-in-first-out (FIFO), i.e., the oldest messages go out of the queue first. The error queue can be cleared with the *CLS command. Executing this command when the error queue is empty will return "0, "No Error". The error queue can hold up to 1000 error messages.
- Query: :SYSTem:ERRor[:NEXT]?
- Setting: Not supported
- **Example:** SYST:ERR?
- Reset No effect.

state:

:SYSTem:HELP:HEADers?

 Function:
 Query the list of commands supported by 87234. The data format is <Arbitrary data block>. See Section 7.7.6 of IEEE 488.2.
 #nNNN...Nddd......ddd<LF>

| Data newline character indicating the end of the data block.

Data length (i.e., the number of bytes of d)

Number of bits of data length (i.e., the number of bits of N)

The marker for the start of the data block.

The data block is of the form $#510331 \dots$ in <LF> n = 5 and N = 10331.

- **Query:** :SYSTem:HELP:HEADers?
- **Setting:** Not supported
- **Example:** SYST:HELP:HEAD?

:SYSTem:IDN

- Function:Query or set the user-defined string of the 87234.Related program control commands ":SYSTem:IDN:AUTO", "*IDN?"
- Query: :SYSTem:IDN?

3.3 Instrument Subsystem Command

Setting:	:SYSTem:IDN <string parameter=""></string>	
	Valid forms of string paraMeter are "A,	B, C, D"
	Where A stands for the name of the ma	anufacturer, such as Ceyear
	B stands for the product model, such a	s 87234D
	C stands for product serial number, suc	ch as SN01
	D stands for the version number of the	product, such as 1.0.0
Example:	SYST:IDN?	Return the current user-defined IDN return string.
	SYST:IDN "Ceyear,87234D,001,1.0"	Set the user-defined IDN return string

:SYSTem:IDN:AUTO

Function:	Enable or disable user-defined strings, ON: Allows users to query and set user-defined strings via ":SYSTem:IDN", "*IDN?". OFF: Disable users to query and set user-defined strings via ":SYSTem:IDN" and "*IDN?". Related program control commands ":SYSTem:IDN", "*IDN?"
Query: Setting:	:SYSTem:IDN:AUTO? :SYSTem:IDN:AUTO <boolean data=""> Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean></boolean>

 Example:
 SYST:IDN:AUTO?
 Query the switch state of user-defined string.

 SYST:IDN:AUTO
 1
 Enable user-defined strings.

 SYST:IDN:AUTO
 0
 Disable user-defined strings.

 Reset
 Off

Reset (state:

:SYSTem:PRESet

- **Function:** Reset 87234 to the state specified by the parameter. A total of 23 states are offered in this case.
- Query: Not supported
- **Setting:** :SYSTem:PRESet [character data] The form of [character data] is as follows (DEFault is the default parameter, i.e., the parameter when no paraMeter are included.) :
- **Example:** SYST:PRES GSM900 Reset state to GSM900.

Reset See the table below. **state:**

1) DEFault

Table 3.22 Default reset state (DEFault)

ER" Set the	average
-	R" Set the measuremen

3.3 Instrument Subsystem Command

3.3 Instrument Subsystem Command		
CALC[1] 2 3 4:GAIN[:MAGN]	0.000dB	Set the calculation offset to 0
CALC[1] 2 3 4:GAIN:STAT	OFF	Disable the calculation offset
CALC[1] 2 3 4:LIM:CLE:AUTO	ON	Clear the limit detection state when initializing the measurement
CALC[1] 2 3 4:LIM:LOW[:DATA]	-90dBm	Lower limit
CALC[1] 2 3 4:LIM:STAT	OFF	Disable the measurement limit detection
CALC[1] 2 3 4:LIM:UPP[:DATA]	90dBm	Upper limit
CALC[1] 2 3 4:MATH[:EXPR]	SENS1	Measurement expression
CALC[1] 2 3 4:REL[:MAGN]:AUTO	OFF	Disable the reference value of the relative measurement.
CALC[1] 2 3 4:REL:STAT	OFF	Disable relative measurement.
CAL[1] 2:RCAL	No effect	The switch must be calibrated to be unaffected.
DISP[:WIND[1] 2][:NUM[1] 2]:RES	3	Measurement display resolution is set to 3
FORM[:READ]:BORD	NORMal	The byte order of binary data is normal.
FORM[:READ][:DATA]	ASCii	The data format is ASCII
INIT[1] 2:CONT	ON	In Wait for Trigger state
MEM:TABL:SEL	No effect	Current frequency response offset table
PST:CCDF:GAUS[:STAT]	ON	Turn on the Gaussian probability curve
PST:CCDF:TRAC:MARK[1] 2[:SET]	Set to Channel A	Set the marker to measurement curve A
PST:CCDF:MARK[1] 2:X	0	Horizontal coordinate of the cursor
PST:CCDF:COUNt	100E+06	Statistics end count is 100M
PST:CCDF:TIME	0	Statistics end timing is OFF.
PST:CCDF:END:ACTion	STOP	Statistics end behavior is set to "Stop"
PST:CCDF:REF[:STAT]	OFF	Close the statistical reference curve
PST:CCDF:DATA:MAX	12dB	X-axis maximum

[SENS[1]]:AVER:COUN	8	3.3 Instrument Subsystem Command Filter length
[SENS[1]]:AVER:COUN:AUTO	ON	Turn on Auto Average.
[SENS[1]]:AVER:SDET	ON	Turn on the step detection
[SENS[1]]:AVER[:STAT]	ON	Turn on the average
[SENS[1]]:CORR:CSET2[:SEL]	No effect	Currently selected frequency response offset table
[SENS[1]]:CORR:CSET2:STAT	No effect	The switch status of the currently selected frequency response offset table
[SENS[1]]:CORR:FDOF GAIN4[:INP][:MAGN]	No effect	Return the frequency response bias value
[SENS[1]]:CORR:GAIN2:STAT	OFF	Disable the channel offset
[SENS[1]]:CORR:GAIN2:[:INPut][:MAGNitude]	0.00dB	Channel offset is 0
[SENS[1]]:FREQ[:CW :FIX]	1GHz	Channel frequency is 1GHz
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 100us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100us	Set the display time length of trace to 100us
TRAC[1] 2:UNIT	dBm	Trace display unit
TRACe[1] 2:DEFine:TRANsition:REFerence	10%, 90%	Pulse transition reference.
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	IMM	Trigger source
UNIT:POW	dBm	Power unit
UNIT:POW:RAT	dB	Rate unit

2) GSM900

Global System for Mobile Communications, commonly known as GSM,

uses a digital modulation method called 0.3GMSK (Gaussian Minimum Shift Keying). 0.3 indicates the ratio of Gaussian filter bandwidth to bit rate. GMSK is a special type of digital FM modulation. Adding or subtracting 67.708 KHz to the RF carrier frequency indicates 1 and 0. The modulation technique that uses two frequencies to represent 1 and 0 is noted as FSK (frequency shift keying).

In GSM, the data rate is chosen to be 270.833 kbit/sec, exactly four times the RF frequency offset, which minimizes the modulation spectrum and improves the channel efficiency.

FSK modulation with a bit rate exactly 4 times the frequency offset is called MSK (minimum frequency shift keying). In GSM, a Gaussian pre-modulation filter is used to further reduce the modulation spectrum. It reduces the speed of frequency conversion, which would otherwise result in radiated energy to adjacent channels. The parts of the following settings that are not enumerated are the same as DEFault.

Command	Setting	Description
[SENS[1]]:FREQ[:CW :FIX]	900MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 20 us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 520us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	1ms	Set the display time length of trace to 1ms
TRIG[:SEQ]:DEL	-20 μs	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.23 GSM900 preset status

3) EDGE

Enhanced Data for Global Evolution or Enhanced Data for GSM Evolution.

EDGE is a transition technology from GSM to 3G, which mainly uses a new modulation method in GSM systems, namely the state-of-the-art multi-time slot operation and 8PSK modulation technology. Since 8PSK can extend the signal space of the GMSK modulation technique used in existing GSM networks from 2 to 8, this allows each symbol to contain four times more information.

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.24 EDGE preset status	Table	3.24	EDGE	preset status
-------------------------------	-------	------	------	---------------

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	900MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 20 us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 520us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	1ms	Set the display time length of trace to 1ms
TRIG[:SEQ]:DEL	-40 μs	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level

		3.3 Instrument Subsystem Command
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

4) CDMAone

CDMAone is a 2G mobile communication standard. The underlying signaling standard is IS-95, a 2G mobile standard developed by Qualcomm and TIA based on CDMA technology. CDG applied for the trademark cdmaOne for this technology, and cdmaOne and its associated standards were the first commercially available mobile communications standards based on CDMA technology.

IS-95 is the number assigned by TIA to the most prominent air interface standard for 2G mobile communications based on CDMA technology, known as Interim Standard 95.

The parts of the following settings that are not enumerated are the same as DEFault.

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	850MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 10ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	10ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.25 CDMAone preset status

5) CDMA2000 and WCDMA

It is the well-known 3G 1X or 1xRTT, which is the core of 3G CDMA2000 technology. The mark 1x customarily refers to CDMA2000 wireless technology that uses a pair of 1.25 MHz radio channels.

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.26 CDMA2000 and WCDMA: preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	1.9GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 10ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	10ms	Set the display time length of trace

3.3 Instrument Subsystem Command		
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

6) BLUetooth

The parts of the following settings that are not enumerated are the same as DEFault.

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	2.4GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 200ns Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 366us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	500us	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.27 BLUetooth preset status

7) MCPa

Multi-Carrier Power Amplifier.

The ideal software radio combines multiple carriers in the transmitting direction into a one-way signal, which is upconverted and then amplified with a type of MCPA for low-noise amplification of the wideband analog mixed signal. Because the difference between the signal and signal envelope amplitude in mixed signals is large, it is particularly sensitive to amplifier nonlinearity. The MCPA uses a forward feedback technique to suppress unwanted intermodulation carriers and obtain effective power utilization. A good selection of devices and the use of circuit CAD optimization techniques are required.

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.28 MCPa preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	1.9GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 10ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time

		3.3 Instrument Subsystem Command
		of trace
[SENS[1]]:TRACe:TIME	10ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

8) RADar

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.29 RADAR: preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	10GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 3: 750ns Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 1us Gate 2: 250ns Gate 3: 250ns Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	2us	Set the display time length of trace
TRIG[:SEQ]:DEL	-252ns	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

9) 802.11a (WL802DOT11A) and HIPERLAN2

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.30 802.11a and HiperLan2 preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	5.2GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 25us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	50us	Set the display time length of trace

3.3 Instrument Subsystem Command		
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

10) 802.11b/g (WL802DOT11B)

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.31 802.11b/g preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	2.4GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 100us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100us	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

11) 1xeV-DO (XEVDO), 1xeV-DV (XEVDV) and TDSCdma

Evolution-Data Only, CDMA2000 1xEV Phase 1 Supports downlink (forward link) data rates up to 3.1 Mbps

and uplink (reverse link) rates up to 1.8 Mbps with one radio channel transmitting high-speed data message data.

1xEV-DO is already in commercial operation. The European market is slightly ahead of the U.S. market. In the summer of 2004 Czech mobile operator Eurotel began operating the sinceCDMA2000 1xEV-DO network, and they offered uplink rates of about 1 Mbps. This service costs about 30 euros per month without traffic restrictions. To use this service, you need to spend about 300 euros to buy a Gtran GPC-6420 modem.

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.32 1xeV-DO (XEVDO), 1xeV-DV (XEVDV) and TDSCdma preset status

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	1.9GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 10us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 810us Other: 0	Set the length of gate

		3.3 Instrument Subsystem Command
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	1ms	Set the display time length of trace to 1ms
TRIG[:SEQ]:DEL	-40 μs	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

12) NADC

NADC - North American Digital Cellular

The parts of the following settings that are not enumerated are the same as DEFault.

Command	Setting:	Description
[SENS[1]]:FREQ[:CW :FIX]	800MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 123.5us Gate 2: 20.123ms Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1/2: 6.46ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	50ms	Set the display time length of trace to 1ms
TRIG[:SEQ]:DEL	-200 μs	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.33 NADC preset status

13) iDEN

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.34 iDEN preset status

Command	Setting:	Description
[SENS[1]]:AVER:COUN	64	Filter length
[SENS[1]]:FREQ[:CW :FIX]	800MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 15ms	Set the length of gate

3.3 Instrument Subsystem Command

	Gate 2: 90ms Gate 3: 160us Other: 0	
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

14) DVB

The parts of the following settings that are not enumerated are the same as DEFault.

Command	Setting:	Description
[SENS[1]]:AVER:COUN	8	Filter length
[SENS[1]]:FREQ[:CW :FIX]	660MHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: 10us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 15ms Gate 2: 90ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.35 DVB: preset status

15) WiMAX

Worldwide Interoperability for Microwave Access.

Combining this technology with microwave devices that require licensing or are license-free will expand the broadband wireless market and improve the perception of enterprises and service providers due to lower costs.

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.36 WiMAX preset status

		3.3 Instrument Subsystem Command	
Command	Setting:	Description	
[SENS[1]]:FREQ[:CW :FIX]	3.5GHz	Channel frequency	
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 2: 102us Other: 0	Set the start time of gate	
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 102us Gate 2: 306us Other: 0	Set the length of gate	
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace	
[SENS[1]]:TRACe:TIME	1ms	Set the display time length of trace	
TRIG[:SEQ]:DEL	-200us	Trigger delay	
TRIG[:SEQ]:LEV	-5 dBm	Trigger level	
TRIG[:SEQ]:SLOP	POS	Rising edge trigger	
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source	

16) DME

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.37 DME preset status

Command	Setting:	Description
[SENS[1]]:AVER:COUN	32	Filter length
[SENS[1]]:FREQ[:CW :FIX]	1.1GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 1: -2us Gate 2: 8us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 8us Gate 2: 50us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100us	Set the display time length of trace
TRACe[1] 2:DEFine:TRANsition:REFerence	1%, 81%	Pulse transition reference.
TRIG[:SEQ]:DEL	-3us	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

17) DMEPRT

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.38 DME-PRT preset status

Command	Setting:	Description
[SENS[1]]:AVER:COUN	32	Filter length
[SENS[1]]:FREQ[:CW :FIX]	1.1GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	Gate 2: 8us Other: 0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 6us Gate 2: 50us Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	100us	Set the display time length of trace
TRACe[1] 2:DEFine:TRANsition:REFerence	0.25%, 9%	Pulse transition reference.
TRIG[:SEQ]:DEL	-2us	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

18) HSDPA

The parts of the following settings that are not enumerated are the same as DEFault.

Table 3.39 HSDPA preset status

Command	Setting:	Description
[SENS[1]]:AVER:COUN	64	Filter length
[SENS[1]]:FREQ[:CW :FIX]	1.9GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 10ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	0	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	10ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

3. Program G	Control	Commands
--------------	---------	----------

19) LTE

3.3 Instrument Subsystem Command

The parts of the following settings that are not enumerated are the same as DEFault.

LTE: Long term evolution of general-purpose mobile communications technology. Long Term Evolution, a long-term evolution of the UMTS (Universal Mobile Telecommunications System) technology standard developed by the 3GPP (The 3rd Generation Partnership Project), was formally established and launched at the 3GPP Toronto meeting in December 2004. LTE system introduces key technologies such as OFDM (Orthogonal Frequency Division Multiplexing) and MIMO (Multi-Input&Multi-Output), which significantly increase the spectral efficiency and data transmission rate (under the condition of 64QAM, the theoretical maximum downlink transmission rate of 20M bandwidth 2XMIMO is 201Mbps, which is about 150Mbps after excluding signaling overhead. However, according to the actual networking and terminal capacity constraints, it is generally considered that the downlink peak rate is 100Mbps and the uplink is 50Mbps), and it supports a variety of bandwidth allocation: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz. 10MHz, 15MHz, 20MHz.

Command	Setting:	Description
[SENS[1]]:AVER:COUN	64	Filter length
[SENS[1]]:FREQ[:CW :FIX]	2GHz	Channel frequency
[SENS[1]]:SWE[1] 2 3 4:OFFS:TIME	0	Set the start time of gate
[SENS[1]]:SWE[1] 2 3 4:TIME	Gate 1: 1.2ms Gate 2: 10ms Other: 0	Set the length of gate
[SENS[1]]:TRACe:OFFSet:TIME	-0.2ms	Set the minimum display time of trace
[SENS[1]]:TRACe:TIME	11ms	Set the display time length of trace
TRIG[:SEQ]:DEL	0	Trigger delay
TRIG[:SEQ]:LEV	-5 dBm	Trigger level
TRIG[:SEQ]:SLOP	POS	Rising edge trigger
TRIG[:SEQ[1] 2]:SOUR	INT1	Trigger source

Table 3.40 LTE preset status

:SYSTem:VERSion?

- **Function:** Query the SCPI version number used by 87234. The return form is YYYY.X, where YYYY denotes the year and X denotes the version number. It returns 1999.0 in this case.
- Query: :SYSTem:VERSion?
- **Setting:** Not supported
- Example: SYST:VERS?

3.3.11 Trace Subsystem Command (TRACe)

:TRACe[1][:DATA]?

Function: Query the pulse measurement trace data. Input paraMeter are not considered, and the directory of paraMeter is reserved for

compatibility with the 2438 commands.

The format of return data is <Arbitrary data block> in Section 7.7.6 of IEEE 488.2.

#nNNN...Nddd.....ddd<LF>

Data newline character indicating the end of the data block.

Data length (i.e., the number of bytes of d)

Number of bits of data length (i.e., the number of bits of N)

The marker for the start of the data block.

The format of the data elements of each trace is IEEE754 32-bit floating point data, i.e. 4 bytes. Since the number of points in the trace is always 501, the data block is of the form #42004 In <LF> n = 4 and N = 2004.

Query: :TRACe[1][:DATA]? [character data]

The form of [character data] is: HRESolution; MRESolution; LRESolution ParaMeter can be omitted and disregarded.

- Setting: Not supported
- **Example:** TRAC? MRES Query the pulse measurement trace data.
- **Limit:** If the trigger source is INT or EXT, after entering a new INIT operation, if the trigger conditions are not met and the trigger signal has not been waited for, the effect is that the device will be hung and the programmed command will not respond. Therefore, when using this command, it is important to ensure that the device captures the trigger signal.
- **Error** If in free run mode or average power measurement mode, it prompts "-221, "Settings **message:** conflict";

If in trace measurement status TRACe[1]:STATe is not enabled, it prompts -221, "Settings conflict";

If in list status LIST:STAT is enabled, it prompts -221, "Settings conflict";

If the last measurement is invalid, it prompts -230, "Data corrupt or stale", and the INIT command will ensure that the measurement is valid, and changes in measurement paraMeter (e.g., frequency, channel offset) will cause the measurement to be invalid.

:TRACe[1]:DEFine:DURation:REFerence

Function: Query or set the reference value used to calculate the pulse duration (i.e. pulse width).

Query: :TRACe[1]:DEFine:DURation:REFerence? [MIN|MAX]

Setting: :TRACe[1]:DEFine:DURation:REFerence <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

<NRf> ranges from 0 to 100 and DEF is 50.

Example:TRAC1:DEF:DUR:REF?Query the reference value for Channel A to
calculate the pulse duration.TRAC1:DEF:DUR:REF 50Set the reference value for calculating the pulse

Set the reference value for calculating the pulse duration to 50%.

Limit:

Reset The default value is 50% (DEF).

state:

3.3 Instrument Subsystem Command

:TRACe[1]:DEFine:TRANsition:REFerence

Function: Query or set the reference value used to calculate the pulse transition duration (rise time or fall time). :TRACe[1]:DEFine:TRANsition:REFerence? Query: Setting: :TRACe[1]:DEFine:TRANsition:REFerence <numeric data 1>, <numeric data 2> Valid values for numeric data 1 and 2 are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 0 to 100. DEF of <numeric data 1> is 10, DEF of <numeric data 2> is 90 TRAC1:DEF:TRAN:REF? Example: Query the reference value for Channel A to calculate the pulse transition duration. Set the reference values for Channel A to TRAC1:DEF:TRAN:REF 20,80 calculate the pulse transition duration to 20% and 80%. TRAC1:DEF:TRAN:REF DEF,DEF Set the reference values for calculating the pulse transition duration to 10% and 90%. Limit:

Reset The default values are 10% and 90% respectively

state:

:TRACe[1]:MEASurement:INSTant:REFerence?

Function: Query the moment when the trace waveform intersects with the given reference value. The parameter is a percentage, e.g. 10 means 10%.

Calculate the moment at a given power (denoted as Px), denoted as tx

Px = Pbot + (Ptop - Pbot) * x / 100

Ptop and Pbot refer to the top power and bottom power respectively, and the units are linear, such as mW. x is in the form of a percentage, ranging from -25 to 125

If Px is calculated to be less than the minimum power in the current power buffer, the minimum power is taken; if Px is calculated to exceed the peak power, the peak power is taken.

Px = max(Pmin, min(Pmax, Px))

If there are multiple moments, only the first moment is returned.

Traverse the entire power buffer to find two points, and denote the power at the two points as P1 and P2, and the time as t1 and t2, respectively, with two cases:

1) so that the power at the first point is less than or equal to Px and the power at the latter point is greater than or equal to Px.

2) so that the power at the first point is greater than or equal to Px and the power at the latter point is less than or equal to Px.

Using linear interpolation tx = t1 + (t2 - t1) * (Px - P1) / (P2 - P1)

- :TRACe[1]:MEASurement:INSTant:REFerence? <numeric data> Query: Valid values for numeric data are: MIN, MAX, <NRf>. <NRf> ranges from -25 to 125.
- Setting: Not supported

TRAC1:MEAS:INST:REF? 28 Example:

Query the moment when the trace waveform

3.3 Instrument Subsystem Command

intersects with the reference value of 28%

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict";

If in list status LIST:STAT is enabled, it prompts -221, "Settings conflict".

:TRACe[1]:MEASurement:PULSe[1]|2-20:AM|AMPLitude?

Function:	Query the power of the rising edge of the [1] 2-20th pulse.	
Query:	:TRACe[1]:MEASurement:PULSe[1] 2-20:AM AMPLitude?	
Setting:	Not supported	
Example:	TRAC:MEAS:PULS:AM?	Query the power of the rising edge of the pulse.
Limit:		

Description:If the measurement is invalid, "+9.91E37" is returnedErrorIf in free run mode or average power measurement mode, it prompts "-221, "Settings
conflict".

:TRACe[1]:MEASurement:PULSe[1]|2-20:AT|ATRailing?

Function:	Query the power of the falling edge of the [1] 2-20th pulse.	
Query:	:TRACe[1]:MEASurement:PULSe[1] 2-20:AT ATRailing?	
Setting:	Not supported	
Example:	TRAC:MEAS:PULS:AT?	Query the power of the falling edge of the pulse.

Limit:

Description: If the measurement is invalid, "+9.91E37" is returned

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:MEASurement:PULSe[1]|2-20:DCYCle?

Function:	Query the duty cycle of the [1] 2-20th pulse.	
Query:	:TRACe[1]:MEASurement:PULSe[1] 2-20:DCYCle?	
Setting:	Not supported	
Example:	TRAC:MEAS:PULS:DCYC?	Query the duty cycle of the pulse.
Limit:		
Description:	If the measured duty cycle is invalid, "+9.91E37" is returned	
Error message:	If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".	

:TRACe[1]:MEASurement:PULSe[1]|2-20:DURation?

- Function:Query the duration of the [1]|2-20th pulse (i.e. pulse width).Query::TRACe[1]:MEASurement:PULSe[1]|2-20:DURation?
- Setting: Not supported

3. Program Control Commands

3.3 Instrument Subsystem Command

Query the pulse duration.

Example: TRAC1:MEAS:PULS:DUR?

Limit:

Description: If the measured pulse width is invalid, "+9.91E37" is returned

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:MEASurement:PULSe[1]|2-20:PERiod?

Function:	Query the [1] 2-20th pulse period.	
Query:	:TRACe[1]:MEASurement:PULSe[1] 2-20:PERiod?	
Setting:	Not supported	
Example:	TRAC1:MEAS:PULS:PER?	Query the pulse period.
Limit:		
Description:	If the measured period is invalid, "+9.91E37" is returned	
Error message:	If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".	

:TRACe[1]:MEASurement:PULSe[1]|2-20:SEParation?

Function:	Query the interval time (or pulse off time) of the [1] 2-20th pulse.	
Query:	:TRACe[1]:MEASurement:PULSe[1]]2-20:SEParation?	
Setting:	Not supported	
Example:	TRAC1:MEAS:PULS:SEP?	Query the interval time (pulse off time) of the pulse.
Limit:		

Description:	If the measurement value is invalid, "+9.91E37" is returned
Error message:	If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:MEASurement:PULSe[1]|2-20:TILTed|DROop?

Function:	Query the top fluctuation of the [1] 2-20th pulse. The relevant command is: TRACe[1]:MEASurement:TILTed DROop:UNIT :FETCh[1]:DROop? The relationship between the pulse top fluctuation DR and the rising edge amplitude AM (in W) and the falling edge amplitude AT (in W) is as follows: In PCT (%): DR = $\frac{AM-AT}{AM} \times 100\%$ In dB: DR = $10 \times \log \frac{AM}{AT}$	
Query:	:TRACe[1]:MEASurement:PULSe[1] 2-20:TILTed DROop?	
Setting:	Not supported	
Example:	TRAC1:MEAS:PULS:TILT? Query the top fluctuation of the pulse.	
Limit:		
Description:	If the measurement value is invalid, "+9.91E37" is returned	
Error	If in free run mode or average power measurement mode, it prompts "-221, "Settings	

3.3 Instrument Subsystem Command message: conflict".

:TRACe[1]:MEASurement:REFerence?

Function:	Query the power of a given reference value. Algorithm: $P_{x\%} = P_{0\%} + x/100 \times (P_{100\%} - P_{0\%})$ The units are all linear.	
Query:	:TRACe[1]:MEASurement:REFerence? <numeric data=""> Valid values for numeric data are: 0 to 100.</numeric>	
Setting:	Not supported	
Example:	TRAC1:MEAS:REF? 100 Query the top power.	
Limit:		
Error message:	If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".	

:TRACe[1]:MEASurement:TILTed|DROop:UNIT

Function:	Query or set the unit of pulse top fluctuation.	
	The relevant command is:: TRACe[1]:M	EASurement:PULSe[1] 2-20:TILTed DROop?
Query:	:TRACe[1]:MEASurement:TILTed DROop:UNIT?	
Setting:	:TRACe[1]:MEASurement:TILTed DROo Valid character data are: DB or 0: Logarithmic display.	p:UNIT <character data=""></character>
Example:	TRAC1:MEAS:TILT:UNIT?	Query the unit of pulse top fluctuation.
	TRAC1:MEAS:TILT:UNIT DB	Set the unit of pulse top fluctuation to dB.
Error		

message:

:TRACe[1]:MEASurement:TRANsition[1]|2-20:NEGative:DURation?

Function:	Query the pulse negative transition duration (i.e., fall time).	
Query:	:TRACe[1]:MEASurement:TRANsition[1] 2-20:NEGative:DURation?	
Setting:	Not supported	
Example:	TRAC1:MEAS:TRAN:NEG:DUR? Query the fall time.	
Description:	If the measurement value is invalid, "+9.91E37" is returned	
Limit:		
Error message:	If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".	

:TRACe[1]:MEASurement:TRANsition[1]|2-20:NEGative:OCCurence?

Function:	Query the pulse negative transition (i.e., fall) moment.	
Query:	:TRACe[1]:MEASurement:TRANsition[1] 2-20:NEGative:OCCurence?	
Setting:	Not supported	
Example:	TRAC1:MEAS:TRAN:NEG:OCC?	

3. Program Control Commands

3.3 Instrument Subsystem Command

Limit:

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:MEASurement:TRANsition[1]|2-20:POSitive:DURation?

Function: Query the pulse positive transition duration (i.e., rise time).

Query: :TRACe[1]:MEASurement:TRANsition[1]]2-20:POSitive:DURation?

Setting: Not supported

Example: TRAC1:MEAS:TRAN:POS:DUR? Query the rise time.

Limit:

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:MEASurement:TRANsition[1]|2-20:POSitive:OCCurence?

Function: Query the pulse positive transition (i.e., rise) moment.

Query: :TRACe[1]:MEASurement:TRANsition[1]|2-20:POSitive:OCCurence?

Setting: Not supported

Example: TRAC1:MEAS:TRAN:POS:OCC?

Limit:

Error If in free run mode or average power measurement mode, it prompts "-221, "Settings conflict".

:TRACe[1]:STATe

Function: Query or set the trace measurement status of the channel.

Query: :TRACe[1]:STATe?

Setting:	:TRACe[1]:STATe <boolean data=""> Valid forms of <boolean data=""> are: 0,</boolean></boolean>	OFF, 1, ON
Example:	TRAC:STAT?	Query the channel trace measurement status
	TRAC1:STAT 1	Enable the channel trace measurement
Reset	Off	

state:

:TRACe[1]:UNIT

 Function:
 Query or set the trace unit of a given channel.

 Query:
 :TRACe[1]:UNIT?

 Setting:
 :TRACe[1]:UNIT <DBM|W|0|1>

 Example:
 TRAC1:UNIT DBM

 Set the trace unit to dBm.

 Limit:

3.3 Instrument Subsystem Command

3.3.12 Trigger Subsystem Command (INITiate/ TRIGger)

:ABORt[1]

Function: Stop the measurement of the corresponding channel of the 87234. Restart the measurement after sending INITiate:CONTinuous ON.

Setting: ABORt[1]

Example:	ABOR	Stop measuring Channel A.
----------	------	---------------------------

ABOR Stop measuring

Description: 87234 does not set the trigger idle state, i.e. the trigger is always in the wait state.

:INITiate[1]:CONTinuous

Function:	Query or set the trigger state of the 87234: single step and continuous When set to single-step (OFF), wait for trigger until it is set to continuous (ON), or is received INITiate:IMMediate。 This command is equivalent to INITiate:CONTinuous:SEQuence[1]		
Query:	:INITiate[1]:CONTinuous?		
Setting:	:INITiate[1]:CONTinuous <boolean data=""> OFF 0 Single ON 1 Continuous</boolean>		
Example:	INIT:CONT?	Query the trigger state: 0 for single step and 1 for continuous.	
	INIT:CONT ON	Set Channel A to continuous trigger state.	

- **Description:** For the parameter OFF, this corresponds to stopping the measurement; for the parameter ON, this corresponds to starting the measurement.
- Reset state: Set to ON

:INITiate:CONTinuous:ALL

- **Function:** Query or set the trigger state of all channels of the 87234: single step and continuous When set to single-step (OFF), wait for trigger until it is set to continuous (ON), or INITiate:IMMediate is received.
- Query: :INITiate:CONTinuous:ALL?
- Setting:
 :INITiate:CONTinuous:ALL
 <Boolean data>

 OFF | 0
 Single
 ON|1
 Continuous

 Example:
 INIT:CONT:ALL?
 Query the trigger state of all channels. When all channels are continuously triggered, it is 1, otherwise it is 0.

 INIT:CONT:ALL ON
 Set all channels to continuous trigger state.

 Reset state:
 Set to ON

146

3. Program Control Commands

3.3 Instrument Subsystem Command

:INITiate:CONTinuous:SEQuence[1]

Function:	Query or set the trigger state of the 87234: single step and continuous When set to single-step (OFF), wait for trigger until it is set to continuous (ON), or is received INITiate:IMMediate。 This command is equivalent to INITiate[1]:CONTinuous		
Query:	:INITiate:CONTinuous:SEQuence[1]?		
Setting:	:INITiate:CONTinuous:SEQuence[1] <boolean data=""> OFF 0 Single ON 1 Continuous</boolean>		
Example:	INIT:CONT:SEQ?	Query the trigger state: 0 for single step and 1 for continuous.	
	INIT:CONT:SEQ1 ON	Set Channel A to continuous trigger state.	

:INITiate[1][:IMMediate]

Function: Set 87234 to Wait for Trigger state. The measurement starts when a trigger event is received.

Equivalent command INITiate:[IMMediate]:SEQuence[1]

- Query: Not supported
- Setting: :INITiate[1][:IMMediate]
- Example: INIT

Set 87234 to Wait for Trigger state.

:INITiate[:IMMediate]:ALL

- **Function:** Set all channels of the 87234 to be in Wait for Trigger state. The measurement starts when a trigger event is received.
- Query: Not supported
- Setting: :INITiate[:IMMediate][:ALL]
- Example: INIT:ALL

Set all channels of the 87234 to be in Wait for Trigger state.

:INITiate[:IMMediate]:SEQuence[1]

Function: Set 87234 to Wait for Trigger state. The measurement starts when a trigger event is received.

Equivalent command:INITiate[1][:IMMediate]

- Query: Not supported
- **Setting:** :INITiate[:IMMediate]:SEQuence[1]

Example: INIT:SEQ

Set 87234 to Wait for Trigger state.

:INPut:TRIGger:IMPedance

- Function: Query or set the trigger input impedance. Note: The 87234 does not support this command at the moment. This command is used for expansion.
- Query: INPut:TRIGger:IMPedance?

3.3 Instrument Subsystem Command

INPut:TRIGger:IMPedance <character data> Setting: Valid forms of character data: LOW or 0: 50Ω HIGH or 1: 100kΩ

Example: INP:TRIG:IMP? Query the input impedance INP:TRIG:IMP HIGH Set the input impedance to high $(100k\Omega)$

:OUTPut:TRIGger[:STATe]

Function: Query or set the trigger output enable state. The "Trigger Output" port has the following commands associated with it: :SERVice:BIST:TBASe:STATe :SERVice:BIST:VIDeo:STATe Since there is only one trigger output port, the last input signal of the trigger output port is based on the most recently opened signal, and the other states are switched to "OFF".

Query: :OUTPut:TRIGger[:STATe]?

Setting: :OUTPut:TRIGger[:STATe] <Boolean data> Valid forms of <Boolean data> are: 0, OFF, 1, ON.

Example: OUTP:TRIG 0 Disable trigger output.

:TRIGger[1][:IMMediate]

Function: This command puts the 87234 in the trigger waiting state immediately. The equivalent command is : INITiate[1]:[IMMediate] TRIGger[:SEQuence[1]][:IMMediate]

- Query: Not supported
- :TRIGger[1][:IMMediate] Setting:
- TRIG2 Example:

Place the 87234 in the trigger waiting state immediately.

:TRIGger:MODE

Function: Query or set the trigger mode of the 87234.

- :TRIGger:MODE? Query:
- Setting: :TRIGger:MODE <AUTO|NORMal|ALEVel|0|1|2>

AUTO or 0 used to set the automatic trigger mode (If no trigger signal is detected, the 87234 will still be able to measure, but the waveform display may be unstable.);

NORMal or 1 used to set the normal trigger mode (if no trigger signal is detected, the 87234 stops measuring until a trigger signal is detected again).

LEVel or 2 used to set the auto-level trigger mode (if no trigger signal is detected, the 87234 automatically searches for the trigger level). ALEVel consists of AUTO and LEVEL jointly. (not supported by 2436).

Example: TRIG:MODE?

Query trigger mode (0 means AUTO, 1 means NORMal, 2 means ALEVel).

TRIG:MODE AUTO

Set to Auto-Trigger.

3. Program Control Commands

3.3 Instrument Subsystem Command

Limit: The 2436 does not support auto-level trigger mode.

Reset The trigger mode is set to Auto-Trigger.

state:

:TRIGger[:SEQuence[1]]:COUNt

 Function: Query or set the number of trigger event detection/measurement cycles. For example, a trigger count of 100 means that 100 measurements need to be performed in order to respond to 100 triggers. The "CALibration[1]:ZERO:AUTO" is set to auto-zero OFF when the number of trigger settings exceeds 1. When "CALibration[1]:ZERO:AUTO" is set to auto-zero ON, the trigger count returns to the default value of 1.
 Query: :TRIGger[:SEQuence[1]]:COUNt? [MIN|MAX]
 Setting: :TRIGger[:SEQuence[1]]:COUNt <numeric data>

Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 1 to 500. DEF is 1.

Query the trigger times.

MIN is 1, MAX 为 500.

Example: TRIG:COUN?

TRIG:COUN? MINQuery the minimum settable trigger times.TRIG:COUN 100Set the trigger count to 500.TRIG:COUN DEFSet the trigger count to the default value (1 time).

Error If the current [SENSe[1]:]MRATe is not in FAST, it prompts "-221, "Settings conflict""; **message:**

Reset trigger times is 1.

state:

:TRIGger[:SEQuence[1]]:DELay

Function: Query or set the trigger delay. :TRIGger[:SEQuence[1]]:DELay? [MIN|MAX] Query: :TRIGger[:SEQuence[1]]:DELay <numeric data> Setting: Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from -1 to +1, in seconds, DEF is 0, MIN is -1, MAX is +1. Example: TRIG:DEL? Query the trigger delay. TRIG:DEL? MIN Query the minimum settable trigger delay. TRIG:DEL 1E-4 Set the trigger delay to 100us.

3.3 Instrument Subsystem Command TRIG:DEL DEF

Set the trigger delay to the default value (0 second).

Limit:

Description: For 2436: the trigger delay of two channels share the setting; for 2438: the trigger delay of two channels are independent.

Reset state: Trigger delay is set to 0 second.

:TRIGger[:SEQuence[1]]:HOLDoff

- **Function:** Query or set the holdoff of the 87234, in seconds.
- Query: :TRIGger[:SEQuence[1]]:HOLDoff? [MIN|MAX]
- Setting: :TRIGger[:SEQuence[1]]:HOLDoff <numeric data> Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only. <NRf> ranges from 1e-6 to 1 and DEF is 1e-6.
- Example:TRIG:HOLD?Query the current trigger holdoff.TRIG:HOLD0.01Set the holdoff to 10ms.

Limit:

Reset Holdoff is set to 1e-6 seconds.

state:

:TRIGger[:SEQuence[1]]:HYSTeresis

- Function: Query or set the trigger hysteresis of the 87234, in dB.
- Query: :TRIGger[:SEQuence[1]]:HYSTeresis? [MIN|MAX]
- Setting:
 :TRIGger[:SEQuence[1]]:HYSTeresis <numeric data>

 Valid values for numeric data are: DEF, MIN, MAX, <NRf>, where DEF and <NRf> are used for setting only.

 <NRf> ranges from 0 to 3 and DEF is 0, in dB.

 Example:
 TRIG:HYST?

 TRIG:HYST 1
 Set the trigger hysteresis to 1dB

 Limit:

Reset 0dB state:

:TRIGger[:SEQuence[1]]:IMMediate

Function: This command puts the 87234 in the trigger waiting state immediately. The equivalent command is:INITiate[1]:[IMMediate] TRIGger[1][:IMMediate]

Query: Not supported

- **Setting:** :TRIGger[:SEQuence[1]]:IMMediate
- **Example:** TRIG:IMM

Place Channel A in the trigger waiting state immediately.

3.3 Instrument Subsystem Command

:TRIGger[:SEQuence[1]]:LEVel

Function:	Query or set the trigger level.		
Query:	:TRIGger[:SEQuence[1]]:LEVel? [MIN MAX]		
Setting:	:TRIGger[:SEQuence[1]]:LEVel <numeric data=""> Valid values for numeric data are: DEF, MIN, MAX, <nrf>, where DEF and <nrf> are used for setting only. <nrf> ranges from -40 to 20 dBm and the DEF is -5 dBm.</nrf></nrf></nrf></numeric>		
Example:	TRIG:LEV?	Query the current trigger level.	
	TRIG:LEV -3	Set the trigger level to -3dBm.	
Limit:			
Reset state:	The trigger level is set to -5dBm.		
:TRIGger[:SEQuence[1]]:LEVel:AUTO			

Function: Set 87234 to auto-level trigger state.

Query: :TRIGger[:SEQuence[1]]:LEVel:AUTO?

Setting: :TRIGger[:SEQuence[1]]:LEVel:AUTO <Boolean data>|ONCE|2

Valid forms of <Boolean data> are: 0, OFF, 1, ON.

For "OFF" or "0", the trigger mode is set to auto-trigger: that is, the trigger level is not searched, and if it is not triggered, the waveform will be unstable.

For "ON" or "1", the trigger mode is set to auto-level trigger, which automatically searches the trigger level according to the power of the measured signal.

For "ONCE" or 2, the trigger mode is set to auto-level trigger, and the auto search of trigger level is executed once, and the trigger mode is set to auto trigger after the search is completed.

Example:TRIG:LEVel:AUTO?Query the automatic level trigger mode (0
means OFF, 1 means ON, 2 means OFF).TRIG:LEVel:AUTO 2Set to auto-level trigger once and turn off
auto-level trigger afterwards.

Limit: It is not supported by the 2436, but are supported by the 2438 and the 87234.

Reset ON.

state:

:TRIGger[:SEQuence[1]]:POSition

- **Function:** Query or set the delay of the trigger event relative to the initial measurement. Assuming that the trigger delay time is zero, set the trigger position to LEFT without delay, set to RIGHT will delay 10 horizontal scales, and set to MIDDLE to delay 5 horizontal scales. Note that the TRIGger:DELay command affects the position of the triggered event.
- Query: :TRIGger[:SEQuence[1]]:POSition?

The return value is 0 to 2, indicating the left, center and right trigger position respectively.

Setting: :TRIGger[:SEQuence[1]]:POSition <character data> Valid character data are: LEFT or 0: Left trigger;

3.3 Instrument Subsystem Command

MIDDle or 1: Middle trigger; RIGHt or 2: Right trigger.

- Example: TRIG:POS?
 - TRIG:POS MIDD
 - TRIG:POS 1

Query the trigger position.

Set the trigger position to middle trigger.

Set the trigger position to middle trigger.

Limit: For pulse measurement mode only

Reset Set the trigger position to left trigger.

state:

:TRIGger[:SEQuence[1]]:SLOPe

Function:	Query or set the trigger slope.		
Query:	:TRIGger[:SEQuence[1]]:SLOPe?		
Setting:	 :TRIGger[:SEQuence[1]]:SLOPe <character data=""></character> Valid values of character data are: 0 or POSitive: Capture the trigger event at the rising edge of the signal. 1 or NEGative: Capture the trigger event at the falling edge of the signal. 		
Example:	TRIG:SLOP?	Query the trigger slope.	

TRIG:SLOP NEG Set the falling edge trigger.

Limit:

Reset The trigger slope is set to rising edge trigger (POSitive).

state:

:TRIGger[:SEQuence[1]]:SOURce

Function:	Query or set the trigger source.		
	The equivalent command is :TRIGger[1]]:SOURce	
Query:	:TRIGger[:SEQuence[1]]:SOURce?		
Setting:	:TRIGger[:SEQuence[1]]:SOURce <cha< th=""><th>aracter data></th></cha<>	aracter data>	
	Valid values of character data are:		
BUS: The trigger source is a "*TRG" generic command or a "TRIGger:IMMediat command.			
	EXTernal: The trigger source is the trigger	ger input 1 on the rear panel.	
	HOLD: Trigger hang, trigger 87234 with "TRIGger:IMMediate" command.		
	IMMediate: Trigger the system to run all the time. If "INITiate:CONTinous" is set to "ON the 87234 operates in the free-run mode, otherwise, after "INITiate:IMMediate" is sen the 87234 enters the measurement stop state (IDLE state) after one measurement. INTernal[1] means the trigger source is Channel A.		
Example:	TRIG:SOUR?	Query the trigger source.	
	TRIG:SOUR INT1	Set the trigger source to Channel A.	
Reset state:	Trigger source is set to Channel A (INT	1).	

3.3.13 Unit Subsystem Command (UNIT)

:UNIT[1]|2|3|4:POWer

Function: Query or set the specified measurement power unit. The menu operations are linear and logarithmic.

Absolute power measurements are in W and dBm, corresponding to linear and logarithmic, respectively.

Ratio measurements and relative power measurements are in % and dB, corresponding to linear and logarithmic, respectively.

UNIT1 corresponds to Measurement 1;

UNIT2 corresponds to measurement 2;

UNIT3 corresponds to measurement 3; UNIT4 对应于测量 4

- **Query:** :UNIT[1]|2|3|4:POWer?
- Setting: :UNIT[1]|2|3|4:POWer <character data> Valid character data are: DBM or 0: Logarithmic display. W or 1: Linear display

Example:UNIT2:POW?Query the power unit of Measurement 2.UNIT1:POW WSet the power unit of Measurement 1 to W.

:UNIT[1]|2|3|4:POWer:RATio

- Function: Query or set the specified measurement ratio measurement power unit. The menu operations are linear and logarithmic.
 UNIT1 corresponds to Measurement 1;
 UNIT2 corresponds to measurement 2;
 - UNIT3 corresponds to measurement 3;

UNIT4 对应于测量 4.

- Query: :UNIT[1]|2|3|4:POWer:RATio?
- Setting: :UNIT[1]|2|3|4:POWer:RATio <character data> Valid character data are: DB or 0: Logarithmic display. PCT or 1: Linear display (PCT indicates %)
- Example:UNIT2:POW:RAT?Query the power unit of Measurement 2.UNIT1:POW:RAT PCTSet the power unit of Measurement 1 to PCT.

3.3.14 Service Subsystem Command (SERVice)

:SERVice:BIST:TBASe:STATe

 Function:
 Query or set the state of the internal 10MHz time base signal output at the "trigger output" port for debugging purposes.

 The port has the following commands associated with it.
 :SERVice:BIST:TBASe:STATe

 :SERVice:BIST:VIDeo:STATe
 :OUTPut:TRIGger:[STATe]

3.3 Instrument Subsystem Command

Since there is only one trigger output port, the last input signal of the trigger output port is based on the most recently opened signal, and the other states are switched to "OFF".

Query: :SERVice:BIST:TBASe:STATe?

Setting:	:SERVice:BIST:TBASe:STATe <boolean data=""></boolean>
	Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean>

Example: SERV:BIST:TBAS:STAT? Query the output state of the time base signal.

Example: SERV:BIST:TBAS:STAT 1 Turn on the output of the time base signal.

Error

message:

:SERVice:BIST:VIDeo:STATe

Function: Query or set the state of video output signal output at the "trigger output" port for debugging purposes.

The port has the following commands associated with it.

:SERVice:BIST:TBASe:STATe

:SERVice:BIST:VIDeo:STATe

:OUTPut:TRIGger:[STATe]

Since there is only one trigger output port, the last input signal of the trigger output port is based on the most recently opened signal, and the other states are switched to "OFF".

Query: :SERVice:BIST:VIDeo:STATe?

Setting:	:SERVice:BIST:VIDeo:STATe <boolean data=""> Valid forms of <boolean data=""> are: 0, OFF, 1, ON</boolean></boolean>		
Example:	SERV:BIST:VID:STAT?	Query the output state of the video output.	
Example:	SERV:BIST:VID:STAT 1	Turn on the output of the video output.	
_			

Error message:

:SERVice:SENSor[1]:CDATe?

Function: Query the calibration date of the 87234. The calibration date is stored in the EEPROM of the 87234.

Query: :SERVice:SENSor[1]:CDATe?

Setting: Not supported

Example: SERV:SENS:CDAT? Query the calibration date of the 87234.

Error message:

:SERVice:SENSor[1]:CPLace?

Function: Query the calibration address of the 87234. The calibration address is stored in the EEPROM of the 87234.

Query: :SERVice:SENSor[1]:CPLace?

Setting: Not supported

Example: SERV:SENS:CPL?

Query the calibration address of the 87234.

Error

message:

:SERVice:SENSor[1]:FREQuency:MAXimum?

- **Function:** Query the maximum frequency of the 87234. The maximum frequency is stored in the EEPROM of the 87234.
- Query: :SERVice:SENSor[1]:FREQuency:MAXimum?
- **Setting:** Not supported

Example: SERV:SENS:FREQ:MAX?

Query the maximum frequency of the 87234.

Error message:

:SERVice:SENSor[1]:FREQuency:MINimum?

Function: Query the minimum frequency of the 87234. The minimum frequency is stored in the EEPROM of the 87234.

- Query: :SERVice:SENSor[1]:FREQuency:MINimum?
- **Setting:** Not supported

Example: SERV:SENS:FREQ:MIN? Query the minimum frequency of the 87234.

```
Error
```

```
message:
```

:SERVice:SENSor[1]:SNUMber?

Function: Query the string number of the 87234. The string number of the 87234 is stored in the EEPROM of the 87234.

Query: :SERVice:SENSor[1]:SNUMber?

Setting: Not supported

Example: SERV:SENS:SNUM? Query the string number of the 87234.

Error

message:

:SERVice:SENSor[1]:TYPE?

Function: Query the type of the 87234. The type of the 87234 is stored in the EEPROM of the 87234.

Query: :SERVice:SENSor[1]:TYPE?

Setting: Not supported

Example: SERV:SENS:TYPE? Query the type of the 87234.

Error

message:

:SERVice:SNUMber

Function: Query or set the string number of the 87234.

Query: :SERVice:SNUMber?

Setting: :SERVice:SNUMber <character data>

3. Program Control Commands

3.3 Instrument Subsystem Command Temporarily reserved.

Example: SERV:SNUM?

4.1 Basic Operation Examples

4. Programming Examples

•	Basic Operation Examples	157
•	Advanced Operation Examples	<u>.</u> 161
•	Application Examples	166

4.1 Basic Operation Examples

Take the following as an example to describe the basic method for realizing instrument program control programming via the VISA library. Take the C++ language as an example.

•	VISA Library	157
•	Example Runtime Environment	<u>.</u> 158
•	Initialize and Set Default State	<u>.</u> 158
•	Send Setting Command	<u>.</u> 159
•	Read the State of Measuring Instrument	160
•	Command Synchronization	<u>.</u> 160

4.1.1 VISA Library

VISA is the generic name for the standard I/O function library and its associated specifications. VISA library function is a set of functions that can be easily called. Its core function can control various types of devices without considering the interface type of devices and the use of different I/O interface software. These library functions are used to write the driver program of the instrument and complete the command and data transmission between the computer and the instrument, so as to realize program control of the instrument. By initializing the addressing string ("VISA resource string"), a connection to an instrument with a program port (LAN, USB, GPIB and RS-232, etc.) can be established.

To achieve remote control, it is first required to install the VISA library. VISA library packages the underlying transmission functions of VXI, GPIB, LAN and USB interfaces to make it convenient for users to recall directly. The programming interface supported by the 87234 is USB. These interfaces, combined with the VISA library and programming language, allow remote control of the 87234. At present, Keysight I/O Library provided by Keysight is often used as the underlying I/O Library.

Figure 4.1 shows the relationship between the program control interfaces, VISA libraries, programming languages and the 87234 with the USB interface as an example.

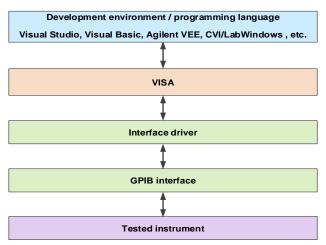


Fig.4.1 Programmable software/hardware layer

4.1 Basic Operation Examples 4.1.2 Example Runtime Environment

4.1.2.1 Configuration Requirements

The programming examples described in this chapter have run successfully on a computer configured as follows.

- □ IBM compatible PC above Pentium class;
- □ Windows 2000, Windows XP, Windows 7 or, Windows 8, Windows 10 operating systems.
- □ Visual Studio 2010/2012/2013/2015/2017 integrated development environment;
- □ VISA library of NI or Keysight;
- □ USB cable

4.1.2.2 Files Included

To run an example program written in C/C++, you must include the required files in the VC project.

If you use the VISA library, you must:

- Add visa32.lib to the source file;
- Add visa.h to the header file.

If you use the NI-488.2 library, you must:

Add GPIB-32.OBJ file to the source file;

Add windows.h file to the header file;

Add Deci-32.h file to the header file.

For more information about the NI-488.2 library and VISA library, please refer to the websites of NI and Keysight respectively.

4.1.3 Initialize and Set Default State

To start the program, the VISA resource manager must be initialized, so as to open and establish the communication connection between the VISA library and instrument. The specific steps are as follows:

4.1.3.1 Generate Global Variables

Start by generating global variables that other program modules will recall, such as instrument handle variables. The following example programs should contain the following global variables:

ViSession iDevHandle;

ViSession iDefaultRM;

const char rgcDevRsc[MAX_RSC_LEN] = "USB0::1204::4112::2019001::0::INSTR";

const int iTmo = 5000;

Where, the constant rgcDevRsc represents the instrument descriptor, "USB0" represents the controller, "1204" represents the vendor ID of the instrument, 4112 is the product ID, and 2020001 is the product serial number.

If the instrument is controlled via the GPIB interface and the GPIB address is "20", then the value of the variable is

const char rgcDevRsc[MAX_RSC_LEN] = "GPIB0::20::INSTR";

4.1 Basic Operation Examples

If the instrument is controlled via a LAN socket interface with IP address 192.168.1.1 and port number 5025, then the value of the variable is

const char rgcDevRsc[MAX_RSC_LEN] = "TCPIP0::192.168.1.1::5025::SOCKET";

If the instrument is controlled via the LAN interface with IP address 192.168.1.1, then the value of the variable is

const char rgcDevRsc[MAX_RSC_LEN] = "TCPIP0::192.168.1.1::INSTR";

4.1.3.2 Initialize the Controller

The following example shows the way to open and establish the communication connection between the VISA library and instrument (with instrument descriptor specified).

//Initialize the master: open the default resource manager and return the instrument handle iDevHandle.

void InitController()
{
ViStatus iStatus;
iStatus = viOpenDefaultRM(&iDefaultRM);
iStatus = viOpen(iDefaultRM, rgcDevRsc, VI_NULL, VI_NULL, &iDevHandle);

}

4.1.3.3 Initialize the instrument

The following examples show how to initialize the default state of the instrument and empty the status register.

void InitDevice()

{

ViStatus iStatus;

ViUInt32 uiRetCnt;

```
iStatus = viWrite(iDevHandle, "*CLS\n", strlen("*CLS\n"), &uiRetCnt); //Status Reset
```

```
iStatus = viWrite(iDevHandle, "*RST\n", strlen("*RST\n"), &uiRetCnt); //Instrument Reset
```

}

4.1.4 Send Setting Command

The following example shows how to set the frequency of the 87234.

void SimpleSettings()

4.1 Basic Operation Examples

{

ViStatus iStatus;

ViUInt32 uiRetCnt;

//Set the frequency to 128MHz

iStatus = viWrite(iDevHandle, "FREQ 1.2e8\n", strlen("FREQ 1.2e8\n"), &uiRetCnt);

}

4.1.5 Read the State of Measuring Instrument

The following examples show how to read the set state of the instrument.

void ReadSettings()

{

ViStatus iStatus; //Status

ViUInt32 uiRetCnt; //read the returned bytes char rgcBuf[256]; //Temporary buffer char* pcCmd = NULL; //Command pointer

//QueryFreq

pcCmd = "FREQ?\n";

iStatus = viWrite(iDevHandle, pcCmd, strlen(pcCmd), &uiRetCnt);

Sleep(10);

iStatus = viRead(iDevHandle, rgcBuf, sizeof(rgcBuf), &uiRetCnt);

//Print debugging information

printf("frequency %s", rgcBuf);

}

4.1.6 Command Synchronization

The following examples illustrate the methods for command synchronization with sweep process.

void SweepSync()

{

ViStatus iStatus; //Status

ViUInt32 uiRetCnt; //read the returned bytes

ViEventType eType; //Event Type

4.2 Advanced Operation Examples

ViEvent eEvent; //Event

int iStat; //Status word

char rgcOpcOk[256]; //OPC string

char* pcCmd = NULL; //Command pointer

/* The command INITiate[:IMMediate] is used to start single sweep (when continuous sweep is OFF, INIT:CONT OFF)*/

/* Only at the end of single sweep can the next command in the command buffer be executed */ */

pcCmd = "INIT:CONT OFF\n";

iStatus = viWrite(iDevHandle, " pcCmd ", strlen(pcCmd), &uiRetCnt);

//Method 1 for waiting for the sweep to end: use *WAI

pcCmd = "ABOR;INIT:IMM;*WAI\n";

iStatus = viWrite(iDevHandle, " pcCmd ", strlen(pcCmd), &uiRetCnt);

//Method 2 for waiting for the sweep to end: use *OPC

pcCmd = "ABOR;INIT:IMM; *OPC?\n";

iStatus = viWrite(iDevHandle, " pcCmd ", strlen(pcCmd), &uiRetCnt);

iStatus = viRead(iDevHandle, rgcOpcOk, 2, &uiRetCnt); //wait for *OPC to return "1"

//Main program continues.....

}

4.2 Advanced Operation Examples

4.2.1 USBTMC Program Control Example

4.2.1.1 Before Using the Examples

If you use VISA library for program control, you need to install VISA library, such as KeysightIO17.2, NI VISA5.0, etc.

Note that lower versions of the VISA library do not support the USBTMC programming feature.

4.2.1.2 Examples

1) Using VISA library and C++ language to implement web programs

In this example, USB program control is implemented via the VISA library.

Start VS2005 or above, add the necessary files and add the directory where visa.h is located to the "Include files" path of the project (to add: press "Tools" in the menu, then press "Options", "Projects and Solutions", "VC++ Directory", and then select "Include files" under the "Show directories with the following content", and add the directory where visa.h is located in the list. (For the English version of VS, please refer to the above method to set up, without further explanation.)

4. Programming Examples
4.2 Advanced Operation Examples
Enter the following code into your .cpp file

#include "stdafx.h"
#include <visa.h>
#include <stdio.h>
#include <stdib.h>

#define M_USB_VID	0x3399	//USB Vendor ID
#define M_USB_PID	0x3800	//Instrument ID
#define M_USB_SN	"ZGK0054	1" //Instrument Serial Number (No.)

//Description:

ViSession g_uiDefaultRm = 0; //Resource Handle ViSession g_uiInstrHandle = 0; //Device VISA Handle

```
void UsbInit(void);
void UsbTest(void);
void UsbClose(void);
//USB test main program
void UsbTestMain(void)
```

{

//Initialize (user opens the instrument connection before using the instrument)
UsbInit();

//Test (user can communicate with the instrument)
UsbTest();

//OFF (close the instrument connection when the user is no longer using the instrument)
UsbClose();

}

```
//USB initialization
```

```
void UsbInit(void)
```

{

162

```
ViStatus iStatus = 0; //Status
ViChar rgcBuf[256]; //Temporary Buffer
```

}

{

```
sprintf(rgcBuf, "USB0::%d::%d::%s::0::INSTR", M_USB_VID,M_USB_PID,M_USB_SN);
    iStatus = viOpenDefaultRM(&g_uiDefaultRm); //Open VISA Task
    if (iStatus)
    {
        printf("The task cannot be opened. Please recheck the device and connect\n").
    }
    else
    {
        iStatus = viOpen(g_uiDefaultRm, rgcBuf, VI_NULL, 5000, &g_uiInstrHandle);
        if (iStatus)
        {
             printf("The devicee cannot be opened. Please recheck the device and connect\n");
        }
        else
        {
        }
    }
//USB Test
void UsbTest(void)
    ViStatus iStatus = 0; //Status
    ViChar rgcBuf[256]; //Temporary Buffer
    ViByte rgcRead[256]; //Read buffer
    ViReal64 rgdFreq[2]; //Frequency array
    ViUInt32 uiRetCnt; //Return length
    if (0 == g_uiInstrHandle)
    {
        printf("The device is not opened. Please recheck the device and connect\n");
    }
```

```
4. Programming Examples
```

4.2 Advanced Operation Examples else

```
e:
```

164

```
//1) First query the frequency of Channel A, and store it in rgdFreq[0]
viPrintf(g_uiInstrHandle, "SENS1:FREQ?\n");
Sleep(10);
viRead(g_uiInstrHandle, rgcRead, sizeof(rgcRead), &uiRetCnt);
rgcRead[uiRetCnt] = 0;
printf((PCHAR)rgcRead);
```

```
sscanf((PCHAR)&rgcRead[0], "%If", &rgdFreq[0]);
sprintf(rgcBuf, "Frequency of Channel A: %lg\n", rgdFreq[0]);
printf(rgcBuf);
```

//2) Set the frequency of Channel A to .78GHz viPrintf(g_uiInstrHandle, "SENS1:FREQ %lfGHz\n", 16.78);

```
//3) Query the frequency of Channel A, and store it in rgdFreq[1]
viPrintf(g_uiInstrHandle, "SENS1:FREQ?\n");
viScanf(g_uiInstrHandle, "%t", rgcBuf); //Put the query results into an array
printf(rgcBuf);
```

```
sscanf(rgcBuf, "%lf", &rgdFreq[1]);
sprintf(rgcBuf, "Frequency of Channel A: %lg\n", rgdFreq[1]);
printf(rgcBuf);
```

```
//4) Restore the frequency of Channel A
    viPrintf(g_uiInstrHandle, "SENS1:FREQ %lg\n", rgdFreq[0]);
    }
//USB close
void UsbClose(void)
{
    if (0 != g_uiInstrHandle)
     {
```

4.2 Advanced Operation Examples

```
viClose(g_uiInstrHandle); //Close the device
g_uiInstrHandle = 0;
}
if (0 != g_uiDefaultRm)
{
viClose(g_uiDefaultRm); //Close default tasks
g_uiDefaultRm = 0;
}
```

4.2.2 Linux development examples

Currently, there are many versions of Linux systems in the market, and most of them cannot install the VISA library. The example in this section uses the system common read/write command to realize the programmable use of the 87234.

Note: Linux should support the USBTMC protocol.

#include <fcntl.h>

```
#define O_RDWR 2
#define USB_MAX_BUFFER 4096
#define M_CMD_IDN "*IDN?"
#define M_CMD_MEASURE "MEAS?"
```

int UsbtmcTest()

{

//If there are multiple devices, it may be "/dev/usbtmc1",..... char* pcUsbtmcDev = "/dev/usbtmc0"; char* pcWritePtr; unsigned int uiHandle; unsigned long dwReadCnt; char cReadBuf[USB_MAX_BUFFER]; unsigned int iStatus;

//The device must be turned on before use
uiHandle = open(pcUsbtmcDev, O_RDWR, 666);

4.3 Application Examples

```
//Send the command "*IDN?" to the device
pcWritePtr = M_CMD_IDN;
iStatus = write(uiHandle, pcWritePtr, strlen(pcWritePtr));
//Read information from the device
dwReadCnt = read(uiHandle, cReadBuf, USB_MAX_BUFFER);
printf("IDN is: %s", cReadBuf);
```

//Send the command "MEAS?" to the device
pcWritePtr = M_CMD_MEASURE;
iStatus = write(uiHandle, pcWritePtr, strlen(pcWritePtr));
//Read information from the device
dwReadCnt = read(uiHandle, cReadBuf, USB_MAX_BUFFER);
printf("The measurement result is : %s", cReadBuf);

//The device must be turned off at the end of use close(uiHandle);

}

4.3 Application Examples

4.3.1 Free-run based for peak and average power measurements

The peak value and average power of the pulse can be measured without capturing the trigger signal, with fast measurement speed and high efficiency, which is suitable for measuring the average power of the signal. The default aperture size is 50ms, which is only applicable to signals with a measurement period of less than 1ms. When the periodic signal is greater than 1ms, it is necessary to set the aperture size to an integral multiple of the periodic signal (it is recommended to be more than 10 times. The larger the setting is, the more stable the measurement is, but the longer the measurement time is).

SYST:PRES	//Reset the device to its default value
DET:FUNC NORM	//Set the measurement mode to "NORM"
	//Trigger source set to execute immediately
CALC1:FEED "POW:AVER" of the pulse	//Configure Measurement 1 to measure the average power
CALC2:FEED "POW:PEAK" the pulse	//Configure Measurement 2 to measure the peak power of

//Execute the following two commands according to the actual test requirements (external zeroing operation is required when measuring small signals)

4. Programming Examples
4.3 Application Examples

CAL:ZERO:TYPE EXT

//Set to external zeroing mode

//Cut off the signal input and perform an external zeroing

CAL:ZERO:AUTO ONCE

//Automatically change the frequency according to the test signal

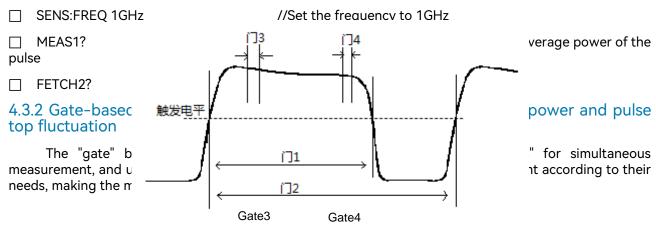


Figure 4.2 Gate measurement diagram

The measured signal as shown in the figure is a pulse signal with a period of 100us and a pulse width of 70us.

SYST:PRES

//Reset the device to its default value

□ DET:FUNC NORM Gate1 t the measurement mode to "NORM"

TRIG:SOUR INT

CALC1:FEED "POW:AVER ON SWEEF Gate2 nfigure Measurement 1 to measure the average power of Gate 1

□ CALC2:FEED "POW:AVER ON SWEEP2" //Configure Measurement 2 to measure the average power of Gate 2

 $\hfill\square$ CALC3:FEED "POW:PEAK ON SWEEP1" //Configure Measurement 3 to measure the peak power of Gate 1

□ CALC4:FEED1 "POW:AVER ON SWEEP3" //Configuration measurement 4 input 1 is the average power of Gate 3

CALC4:FEED2 "POW:AVER ON SWEEP4" //Configuration measurement 4 input 2 is the average power of Gate 4

//Execute the following two commands according to the actual test requirements (external zeroing operation is required when measuring small signals)

- □ CAL:ZERO:TYPE EXT //Set to external zeroing mode
- CAL:ZERO:AUTO ONCE //Cut off the signal input and perform an external zeroing

//Automatically change the frequency and the measurement length of the gate according to the test signal

SENS:FREQ 1GHz	//Set the frequency to 1GHz
SWE1:TIME 70e-6	//Measurement length of Gate 1 is 70us

- SWE2:TIME 100e-6 //Measurement length of Gate 2 is 100us
- SWE3:OFFS:TIME 7e-6 //Measurement start time of Gate 3 is 7us

4. Programming Examples		
4.3 𝐴	Application Examples SWE3:TIME 1e-6	//Measurement length of Gate 3 is 1us
	SWE4:OFFS:TIME 62e-6	//Measurement start time of Gate 4 is 62us
	SWE4:TIME 1e-6	//Measurement length of Gate 4 is 1us
□ (pul	MEAS1? lse power) of Gate 1	//Perform a measurement and read the average power
	FETCH2?	//Read the average power (average power) of Gate 2
	FETCH3?	//Read the peak power (peak power) of Gate 3
□ ave	FETCH4:RAT? // rage power of Gate 4 (pulse top fluct	Read the measured value of the average power of Gate 3 - uation)
4.3	.3 Fast build-up of top-of-puls	e average power measurements with "gates"
	SYST:PRES	//Reset the device to its default value
	DET:FUNC NORM	//Set the measurement mode to "NORM"
	TRIG:SOUR INT	//Trigger source set to internal
	TRAC:STAT ON	//Enable trace measurement
	SENS:FREQ 1GHz	//Set the frequency to 1GHz
□ of G	CALC:FEED "POW:AVER ON SWEEF Gate 1	21" //Configure Measurement 1 to measure the average power
	SENS:TRAC:AUTO	//Automatic setting
	SENS:SWE:AUTO:REF1 10.0	//Set the start position of automatic gate to 10% of Gate 1
	SENS:SWE:AUTO:REF2 10.0	//Set the end position of automatic gate to 90% of Gate 1
	SENS:SWE:AUTO ON	//Set Gate 1 as automatic gate
□ pov	MEAS? ver of Gate 1	//Perform one measurement and obtain the average
4.3	.4 GSM timeslot measurements	in list mode
	DET:FUNC NORM	//Set the measurement mode to "NORM"
	TRIG:SOUR EXT	//Trigger source set to external
	SENS:LIST:STAT ON	//Enable list mode.
	SENS:LIST:FREQ:STAR 1GHz	//Set start frequency to 1GHz
	SENS:LIST:FREQ:STOP 10GHz	//Set start frequency to 10GHz
	SENS:LIST:POIN 10	//Set the number of measurement points to 10
	SENS:LIST:MTYP AVER	//Set the measurement type to average power
	SENS:LIST:TSC 2	//Set the number of time slots to 2
	SENS:LIST:TSL:EXCL:OFFS:TIME 0	//Offset time of the exclusion area is 0
	SENS:LIST:TSL:EXCL:TIME 0	//Time length of the exclusion area is 0
	SENS:LIST:TSL:TIME 577e-6	//Time length of the time timeslot measurement is 577us

168

	SENS:LIST:TSL:TREF1 10	4.3 Application Examples //Start time offset of the time timeslot measurement is 10%
//R	epeat the following commands to obtair	n multiple measurement results
	INIT:CONT ON	//Initiate measurement
□ reg	*OPC ister	//Set the operation end bit in the standard event state
	*ESR?	//Query the value of the standard event state register
	FETC?	//Fetch measurement results
4.3	.5 External Trigger Buffer Measur	rement
	DET:FUNC NORM	//Set the measurement mode to "NORM"
	TRIG:SOUR EXT	//Trigger source set to external
	SENS:FREQ 1GHz	//Set the frequency to 1GHz
	SENS:FREQ:STEP 0	//Sweep points 0
	SENS:BUFF:MTYP "AVER"	//Buffer measurement type is Average Power
	SENS:BUFF:COUN 10	//Number of buffer measurements 10
	SENS:SWE:OFFS:TIME 100e-6	//Time offset relative to trigger position 100us
	SENS:SWE:TIME 800e-6	//Time length of measurement 800us
//R	epeat the following commands to obtair	n multiple measurement results
	INIT:CONT ON	//Initiate measurement
□ reg	*OPC ister	//Set the operation end bit in the standard event state
	*ESR?	//Query the value of the standard event state register
	FETC?	//Fetch measurement results
4.3	.6 External Trigger Buffer Sweep	Measurement
	DET:FUNC NORM	//Set the measurement mode to "NORM"
	TRIG:SOUR EXT	//Trigger source set to external
	SENS:BUFF:MTYP "AVER"	//Buffer measurement type is Average Power
	SENS:FREQ:STAR 1GHz	//Set the start frequency to 1GHz
	SENS:FREQ:STOP 10GHz	//Set start frequency to 10GHz
	SENS:FREQ:STEP 10	//Sweep points 10
	SENS:SWE:OFFS:TIME 100e-6	//Time offset relative to trigger position 100us
	SENS:SWE:TIME 800e-6	//Time length of measurement 800us
//R	epeat the following commands to obtair	n multiple measurement results
	INIT:CONT ON	//Initiate measurement
□ reg	*OPC ister	//Set the operation end bit in the standard event state
	*ESR?	//Query the value of the standard event state register

4.3 Application Examples FETC?

//Fetch measurement results

4.3.7 Fast Measurement Mode (Free Run)

"AVER" mode (4000 readings/sec)

	□ SYST:PRES //Reset the device to its default value			
	SENS:FREQ 1GHz	//Set the frequency to 1GHz		
	UNIT:POW W	//Calculation 1 power measurement unit W		
	SENS:AVER:SDET OFF	//Step detection OFF		
	SENS:AVER OFF	//Measurement average OFF		
	SENS:DET:FUNC AVER	//Measurement mode "AVER"		
	SENS:MRAT FAST	//Measurement speed in fast mode		
	TRIG:COUN 100	//Measurement buffer size 100		
	SENS:SWE:APER 250e-6	//Set the aperture length to 250us		
	FETC?	//Fetch measurement results		
"NORM" mode (50000 readings/sec)				
	SYST:PRES	//Reset the device to its default value		
	SENS:FREQ 1GHz	//Set the frequency to 1GHz		
	UNIT:POW W	//Calculation 1 power measurement unit W		
	CAL:ZERO:AUTO OFF	//Auto-Zero OFF		
	CAL:AUTO OFF	//Auto-Calibration OFF		
	SENS:AVER:SDET OFF	//Step detection OFF		
	SENS:AVER OFF	//Measurement average OFF		
	SENS:DET:FUNC NORM	//Measurement mode "NORM"		
	SENS:MRAT FAST	//Measurement speed in fast mode		
	TRIG:COUN 200	//Measurement buffer size 200		
	SENS:SWE:APER 20e-6	//Set the aperture length to 20us		
	FETC?	//Fetch measurement results		

4.3.8 Fast Measurement Mode (External Trigger)

When the aperture length is not larger than the time interval of the external trigger signal, the external trigger signal can be captured continuously without interruption.

The measurement speed is determined by the greater of the time interval of the external trigger signal and the length of the aperture.

"AVER" mode, up to 4000 readings/sec;

"NORM" mode, up to 50,000 readings/sec.

The following routines help users establish GSM timeslot measurement based on external trigger (16 GSM Architecture), which can continuously measure 128 timeslots.

"AVER" mode

amples

			4.3 Application Exam
	SYST:PRES	//Reset the device to its default value	4.5 Application Data
	SENS:FREQ 1GHz	//Set the frequency to 1GHz	
	TRIG:SOUR EXT	//Set to external trigger	
	SENS:AVER:SDET OFF	//Step detection OFF	
	SENS:AVER OFF	//Measurement average OFF	
	SENS:DET:FUNC AVER	//Measurement mode "AVER"	
	SENS:MRAT FAST	//Measurement speed in fast mode	
	TRIG:COUN 128	//Measurement buffer size 128	
	SENS:SWE:APER 500e-6	//Set the aperture length to 500us	5
	FETC?	//Fetch measurement results	
"N	ORM" mode		
	SYST:PRES	//Reset the device to its default value	
	SENS:FREQ 1GHz	//Set the frequency to 1GHz	
	TRIG:SOUR EXT	//Set to external trigger	
	CAL:ZERO:AUTO OFF	//Auto-Zero OFF	
	CAL:AUTO OFF	//Auto-Calibration OFF	
	SENS:AVER:SDET OFF	//Step detection OFF	
	SENS:AVER OFF	//Measurement average OFF	
	SENS:DET:FUNC NORM	//Measurement mode "NORM"	
	SENS:MRAT FAST	//Measurement speed in fast mode	
	TRIG:COUN 128	//Measurement buffer size 128	
	TRIG:DEL 50e-6	//Set the trigger delay to 50us	
	SENS:SWE:APER 500e-6	//Set the aperture length to 500us	5
	FETC?	//Fetch measurement results	
4.3	.9 Continuous and Uninterrupte	ed Measurements	

The average power of known periodic signals, especially large periodic signals, can be accurately measured.

Mode 1: Accurate measurement of the signal with a period of 5s = 50ms*100 (FETCH mode)

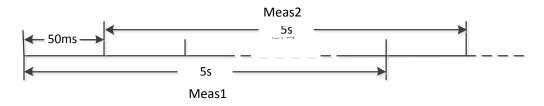


Figure 4.3 Measurement process diagram

4. Programming Examples	
4.3 Application Examples SYST:PRES	//Reset the device to its default value
SENS:FREQ 1GHz	//Set the frequency to 1GHz
CAL:ZERO:AUTO OFF	//Auto-Zero OFF
CAL:AUTO OFF	//Auto-Calibration OFF
SENS:AVER:SDET OFF	//Step detection OFF
SENS:DET:FUNC NORM	//Measurement mode "NORM"
SENS:SWE:APER 50e-3	//Set the aperture measurement length to 50ms
SENS:AVER:COUN 100	//Set the average number of measurements to 100
□ FETC?	//Fetch measurement results

Mode 2: Accurate measurement of the signal with a period of 5s = 50ms*100 (MEAS mode)

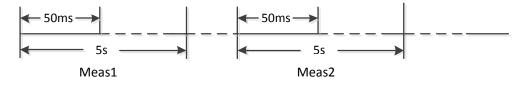


Figure 4.4 Measurement process diagram

//Reset the device to its default value

//Measurement mode "NORM"

//Set the aperture measurement length to 50ms

//Set the average number of measurements to 100

//Perform a measurement and obtain the results

//Set the frequency to 1GHz

//Auto-Calibration OFF

//Step detection OFF

//Auto-Zero OFF

- □ SYST:PRES
- □ SENS:FREQ 1GHz
- CAL:ZERO:AUTO OFF
- CAL:AUTO OFF
- SENS:AVER:SDET OFF
- SENS:DET:FUNC NORM
- SENS:SWE:APER 50e-3
- SENS:AVER:COUN 100
- □ MEAS?

Mode 3: Accurate measurement of the signal with a period of 1s = 50ms*20 (The measurement period of this method cannot exceed 1 second)

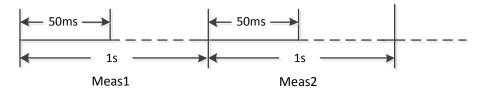
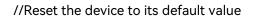



Figure 4.5 Measurement process diagram

□ SYST:PRES

172

4.3 Application Examples

		4.5 Application Examples
SENS:FREQ 1GHz	//Set the frequency to 1GHz	
CAL:ZERO:AUTO OFF	//Auto-Zero OFF	
CAL:AUTO OFF	//Auto-Calibration OFF	
SENS:AVER OFF	//Measurement average OFF	
SENS:AVER:SDET OFF	//Step detection OFF	
SENS:DET:FUNC NORM	//Measurement mode "NORM"	
SENS:MRAT FAST	//Measurement speed in fast mode	
TRIG:COUN 20	//Measurement buffer size 20	
SENS:SWE:APER 50e-3	//Set the aperture measurement le	ngth to 50ms
EETC? //Obtain the measuremen	t results (the average newer in this per	iad can be obtained by

FETC? //Obtain the measurement results (the average power in this period can be obtained by summing and averaging all the measurement results)

5. Error Description

This chapter will show you how to find problems and accept after-sales service, and explain error message of the 87234.

- Error Message......175
- Repair Methods......179

5.1 Error Message

The 87234 records errors during measurement in two ways: error message queues displayed on the front panel and SCPI (in the remote control mode) error message queues. which are stored and managed separately.

1) Error message format and description

In remote control mode, errors are recorded in the error/event queue of the status reporting system, and can be queried with the command "SYSTem:ERRor?". The format is as follows:

"<Error code>, "<Error in error queue>; ["Detailed error description]"

Example:

"-110,"Data out of range;"

The program control error message includes two types:

A negative error code defined by the SCPI standard. This type of error message is not specified here.

Failure code	Error Description
-101	Invalid character
	Invalid character: There are invalid characters in the command string (command or parameter).
	For example: AVER:COUN !6
-102	Syntax error
	Syntax error: The command string syntax is invalid.
	For example: DISPlay:ACT, CH1
-108	Parameter not allowed
	ParaMeter are not allowed: the command has too many paraMeter, or the command without paraMeter follows the paraMeter.
	For example: TRAC:AUT ON
-109	Missing parameter
	Missing paraMeter: The command has too few paraMeter.
	For example: AVER
-112	Program mnemonic too long
	Command string is too long: A single segment of the command has more than 12 characters.
	For example: OUTPutROSCillatorSTATe ON

5. Error Description		
-113	Undefined header	
	Undefined header: 87234 receives an unrecognized command. Possible causes: Wrong spelling, or wrong abbreviation of the command, etc. For example: CALI:AUTO	
-121	Invalid character in number Invalid characters in the numeric value: there are invalid characters in the numeric parameter. For example:SENS:CORR:GAIN2 #12	
-123	Exponent too large The index is too large: the index of numerical paraMeter exceeds 32000. For example: SENS:CORR:GAIN2 1E32001	
-124	Too many digits Too many bits: the number of bits of numeric paraMeter exceeds 255, without the leading 0.	
-128	Numeric data not allowed Numeric paraMeter are not allowed: commands that cannot receive numeric paraMeter receive a numeric value.	
-131	Invalid suffix Invalid suffix: the suffix of numeric parameter is incorrect. For example: FREQ 10GZ	
-134	Suffix too long Suffix too long: the suffix exceeds 12 characters. For example: FREQ 10GHHHHHHHHHHHHHHHHHHZ	
-138	Suffix not allowed Suffix not allowed: numeric paraMeter cannot be followed by suffixes. For example: SENS:CORR:GAIN2 12HZ	
-148	Character data not allowed Character data is not allowed: check whether quotation marks need to be added. For example: MEM:CLE State_1 Correct: MEM:CLE "State_1"	
-151	Invalid string data Invalid string data: check whether the single quotation marks or double quotation marks of the string match. For example: MEM:CLE "State1	
-158	String data not allowed Character data is not allowed: check whether the parameter type is valid. For example: OUTP:ROSC "ON"	
-161	Invalid block data Invalid block data: Check according to Section 7.7.6 of IEEE 488.2.	
-168	Block data not allowed Block data not allowed: a valid data block was detected, but the command does not support data blocks. For example: OUTP:ROSC #15FETC?	
-178	Expression data not allowed	
176		

	5.1 Error Message
	Expression data not allowed: a valid expression was detected, but expression is not allowed in the 87234.
	For example: SENS:CORR:GAIN2 (1+3)
-211	Trigger ignored Trigger ignored: when 87234 is not in Wait for Trigger state, trig:imm, *trg and other commands are received.
-213	Init ignored Initialization is ignored: when 87234 has been initialized, the measurement initialization command is received. For example: INIT:CONT ON INIT
-214	Trigger deadlock Trigger deadlock
-220	Parameter error; Frequency list must be in ascending order. Parameter error; the frequency list must be arranged in ascending order
-221	Settings conflict Setting conflict: there are many reasons for conflict, such as setting trigger delay during statistical measurement.
-222	Data out of range Data out of range: Numerical data is not within the valid range. for example: AVER:COUN 100000
-224	Illegal parameter value Illegal parameter value: a discrete parameter was received, but it is invalid for this command.
-226	Lists not same length List length is different
-230	Data corrupt or stale; Please calibrate Invalid or damaged data; Please calibrate.
-231	 Data questionable; CAL ERROR Data question; Calibration error: the 87234 calibration failed. The most likely reason is that 87234 is not connected to the output of the calibration source during calibration. Data questionable; CAL ERROR Ch1 Data question; Channel A calibration error: the 87234 calibration failed. The most likely reason is that 87234 is not connected to the output of the calibration source during calibration. Data questionable; CAL ERROR Ch2 Data question; Channel B calibration error: the 87234 calibration failed. The most likely reason is that 87234 is not connected to the output of the calibration source during calibration. Data question; Channel B calibration error: the 87234 calibration failed. The most likely reason is that 87234 is not connected to the output of the calibration source during calibration. Data question; Channel B calibration error: the 87234 calibration failed. The most likely reason is that 87234 is not connected to the output of the calibration source during calibration. Data questionable; Input Overload Data question; Input overload: the power input exceeds the upper power limit of the 87234. Data questionable; Input Overload Ch1
	Data question; Input overload: the power input exceeds the upper power limit of the 87234.

	Data questionable; Lower window log error Data question; Logarithm error in lower measurement: when the difference measurement is carried out, the measurement result is 0 and the unit of display is logarithm. Data questionable; Upper window log error Data question; Logarithm error in upper measurement: when the difference measurement is carried out, the measurement result is 0 and the unit of display is logarithm. Data questionable; ZERO ERROR
	measurement is carried out, the measurement result is 0 and the unit of display is logarithm. Data questionable; Upper window log error Data question; Logarithm error in upper measurement: when the difference measurement is carried out, the measurement result is 0 and the unit of display is logarithm.
	Data question; Logarithm error in upper measurement: when the difference measurement is carried out, the measurement result is 0 and the unit of display is logarithm.
	measurement is carried out, the measurement result is 0 and the unit of display is logarithm.
	Data questionable: 7ERO ERROR
+	Data question; Zeroing error: the 87234 zeroing failed. The most likely reason is that there is power signal input during zeroing.
	Data questionable; ZERO ERROR Ch1
	Data question; Channel A zeroing error: the 87234 zeroing failed. The most likely reason is that there is power signal input during zeroing.
-241	Hardware missing
	Missing hardware: 87234 cannot execute the command, type mismatch.
	System error; Sensor EEPROM Read Failed - critical data not found or unreadable System error; EEPROM read failed - key data not found or unreadable System error; Sensor EEPROM Read Failed - unknown EEPROM table format System error; EEPROM read failed - unknown EEPROM format.
-321	Out of memory
	Exceeding memory
-330	Self-test Failed;
· ·	The self-test fails.
-350	Queue overflow
	Queue overflow: the error queue is full, and subsequent errors will no longer be recorded.
-410	Query INTERRUPTED
	The query is interrupted: A command needs to send data to the output buffer, but the send buffer already contains the data sent by the previous command (without overwriting the previous data). The output buffer is cleared on shutdown or on receipt of the *RST command. Refer to Section 6.3.2.3 of IEEE 488.2 for details.
-420	Query UNTERMINATED
	Query not ended: The 87234 is set to Speak (i.e., send data to the interface bus), but the command to send data to the output buffer is not received. Refer to Section 6.3.2.2 of IEEE 488.2 for details.
	For example, after executing the CONFigure command (which produces no data), an attempt is made to read data from the remote interface.
-430	Query DEADLOCKED
	Query deadlock: The output buffer cannot hold too much data generated by the command, and the output buffer is full. Command execution continues but data is lost. Refer to Section 6.3.1.7 of IEEE 488.2 for details.
-440	Query UNTERMINATED after indefinite response
i	Query not ended after an indefinite response: Some combination queries may generate illegal response messages. If a query command that produces an indefinite response (any block response of indefinite length or any ASCII response data) is not the last query command, the instrument will report a query error and no further responses will be sent

	5.2 Method to Obtain After-sales Services	
after that qu	ry command. Refer to Section 6.5.7.5 of IEEE 488.2 for details.	l

2) Error message type

The error event corresponds only to one type of error message, and the error message types are introduced in details below:

Query error (-499 to -400): indicating that the output queue of the instrument controls and detects a message exchange protocol error described in Chapter 6 of IEEE 488.2. At this point, the query error bit (bit2) of the event status register is set (please refer to IEEE 488.2, 6.5 for details). The data cannot be successfully read from the output queue at this time.

□ Instrument characteristic error (-399 to -300, 201 to 703, and 800 to 810): indicating that the instrument operation is not successful, and the reason may be abnormal hardware or firmware state. Such error codes are often used self-detection of the instrument. At this point, the instrument characteristic error bit (bit3) of the event status register is set.

 \Box Execution error (-299 to -200): indicating that an error is detected during the measurement of the instrument. At this point, the execution error bit (bit4) of the event status register is set.

 \Box Command error (-199 to -100): indicating a syntax error detected during command parsing of the instrument, usually due to an incorrect command format. At this point, the command error bit (bit5) of the event status register is set.

5.2 Method to Obtain After-sales Services

Contact	Us1	79
Deelvere	and Mailing	170

Package and Mailing.....179

5.2.1 Contact us

In case of any failure to the 87234, check and save the error message, analyze possible causes, and refer to the methods provided in "7.2 Troubleshooting and debugging" in the User's Manual for preliminary troubleshooting. If the problem cannot be solved, contact the service and consultation center of the Company as per the contact information provided below and provide us with the error collected. We will coordinate with you to solve the problem as soon as possible.

Contact information:

Service Consultation: 0532--86889847 400--1684191

Technical support: 0532--86880796

Quality Supervision: 0532--86886614

Fax: 0532--86889056

Website: www.ceyear.com

Email: techbb@ceyear.com

Address: No. 98, Xiangjiang Road, Qingdao Economic & Technological Development Zone, Shandong Province

Postal code: 266555

5.2.2 Package and mailing

In case of any failure to the 87234 that is difficult to be eliminated, contact us by phone or fax. If it is confirmed that the 87234 has to be returned for repairing, pack it with the original packing materials and case by following the steps below:

1) Prepare a detailed description of the failure of the 87234 and put it into the package along with it.

3) Place cushions at the four corners of the outer packing carton, and place the instrument in the outer packing carton.

4) Seal the opening of the packing carton with adhesive tape and reinforce the packing carton with nylon tape.

5) Specify text like "Fragile"! Do not touch! Handel with care!" and so on.

6) Please consign it as precision instruments.

7) Keep a copy of all shipping documents.

Notice

Precautions on packing the 87234

Using other materials for packing the 87234 may damage the instrument. Never use polystyrene beads as packing materials because on the one hand, they cannot provide sufficient protection on the instrument, and on the other hand, they can be sucked in to the instrument fan by the static electricity generated, resulting in instrument damage.

Tips

Instrument package and transportation

Please follow carefully the precautions described in "3.1.1.1 Unpacking" of the User's Manual when transporting or handling the instrument (for example, damage occurred during delivery).

^{5.} Error Description

²⁾ Pack the 87234 with the original packing materials, so as to minimize possible damage;

Appendix A Zoom Table of SCPI Classified by Subsystem

Appendixes

Annex A Zoom Table of SCPI Classified by Subsystem......181

Appendix A Zoom Table of SCPI Classified by Subsystem

Table 1 Zoom Table of SCPI Classified by Subsystem

Command	operatio n	Brief description of functions
* <u>CLS</u>	for setting only.	Clear the instrument status data structure
<u>*DDT</u>		Query or set the operation in response to *TRG general command. Note: The 87234 does not support this command at the moment.
*ESE		Query or set the standard event status enable register
* <u>ESR?</u>	For query only.	Query the value of the standard event status register
*IDN?	For query only.	Query the identification string of 87234
* <u>OPC</u>		When all waiting operations are completed, set the operation end bit in the standard event state register
* <u>OPT?</u>	For query only.	Query the instrument option configuration.
*RCL	for setting only.	Call the status in the specified storage call register
*RST	for setting only.	Reset the 87234
*SAV	for setting only.	Store the instrument status into the specified register
* <u>SRE</u>		Query or set the service request register

Appendixes		
Command	operatio n	Brief description of functions
*STB?	For query only.	Query the status word.
<u>*TRG</u>	for setting only.	Trigger all channels in Wait for Trigger
<u>*TST?</u>	For query only.	Perform self-test
*WAI	for setting only.	Place the 87234 in the wait state
:ABORt[1]	for setting only.	Stop the measurement of the corresponding channel of the 87234
:CALCulate[1] 2 3 4:FEED[1] 2		Query or set the measurement mode of measurement display
:CALCulate[1] 2 3 4:GAIN[:MAGNitude]		Query or set the calculation offset value in the specified measurement
:CALCulate[1] 2 3 4:GAIN:STATe		Query or set the switch state of the calculation offset
:CALCulate[1] 2 3 4:LIMit:CLEar:AUTO		Control when the limit FCO (failure count) is cleared
:CALCulate[1] 2 3 4:LIMit:CLEar[:IMMediate]	for setting only.	Clear the FCO (failure count) of the specified measurement
:CALCulate[1] 2 3 4:LIMit:FAIL?	For query only.	Query whether the specified measurement exceeds the limit.
:CALCulate[1] 2 3 4:LIMit:FCOunt?	For query only.	Query the limit detection failure count (FCO) of the specified measurement
:CALCulate[1] 2 3 4:LIMit:LOWer[:DATA]		Query or set the lower limit of the specified measurement limit
:CALCulate[1] 2 3 4:LIMit:STATe		Query or set the specified measurement limit detection switch
:CALCulate[1] 2 3 4:LIMit:UPPer[:DATA]		Query or set the upper limit of the specified

Appendix A Zoom Table of SCPI Classified by Sub-		
Command	operatio n	Brief description of functions
		measurement limit
:CALCulate[1] 2 3 4:MATH[:EXPRession]		Query or set the specified measurement expression
:CALCulate[1] 2 3 4:MATH[:EXPRession]:CATalogue?	For query only.	Enumerate all measurement expressions
:CALCulate[1] 2 3 4:RELative[:MAGNitude]:AUTO		Set the reference value for relative measurement
:CALCulate[1] 2 3 4:RELative[:MAGNitude]:VALue?	For query only.	Query the reference value for relative measurement
:CALCulate[1] 2 3 4:RELative:STATe		Query or set the relative measurement switch status
:CALibration[1][:ALL]	for setting only.	Zeroing and calibration of the 87234
:CALibration[1]:AUTO		Calibration of the 87234
:CALibration[1]:ZERO:AUTO		Zeroing of the 87234
:CALibration[1]:ZERO:TYPE		Query or set the zeroing type.
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]		Query or set the power measurement mode of the specified measurement
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence	for setting only.	Set the power measurement mode of the specified measurement as difference measurement and turn on relative measurement
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence:RELativ e	for setting only.	Set the power measurement mode of the specified measurement as difference measurement, and turn on relative measurement
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]:RATio	for	Set the power

Appendixes		
Command	operatio n	Brief description of functions
	setting only.	measurement mode of the specified measurement as ratio measurement and turn off relative measurement
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]:RATio:RELative	for setting only.	Set the power measurement mode of the specified measurement as ratio measurement and turn on relative measurement
:CONFigure[1] 2 3 4[:SCALar][:POWer][:AC]:RELative	for setting only.	Set the absolute power measurement mode of the specified measurement, and turn on the relative measurement
:DISPlay[:WINDow[1] 2][:NUMeric[1] 2]:RESolution		Query or set the display resolution of the specified measurement
:FETCh[1]:ARRay:AMEasure:POWer?	For query only.	Query the automatically measured power value for a given channel
:FETCh[1]:ARRay:AMEasure:STATistical?	For query only.	Query the statistical measurement value of a given channel
:FETCh[1]:ARRay:AMEasure:TIME?	For query only.	Query the time value of the automatic measurement for a given channel
:FETCh[1]:DROop?	For query only.	Query the pulse top fluctuation measurement value of a given channel
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]?	For query only.	Set the specified measurement as absolute power measurement, turn off relative measurement, and return the measured value
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence?	For query only.	Set the specified measurement as differential power measurement, turn off relative measurement,

	Appendix A Zoom Table of SCPI Classified by Subsystem
Command	operatio Brief description o n functions
	and return the measured value
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence:RE	Lative? For query only. Set the specified measurement as differential power measurement, turn or relative measurement and return the measured value
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]:RATio?	For query only. For query only. Set the powe measurement mode o the specified measurement as ratio measurement, turn of relative measurement and return the measured value
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]:RATio:RELative	For query only. For query only. Set the powe measurement mode of the specified measurement as ratio measurement, turn or relative measurement and return the measured value
:FETCh[1] 2 3 4[:SCALar][:POWer][:AC]:RELative?	For query only. Bet the specified measurement as absolute powe measurement, turn or relative measurement and return the measured value
:FORMat[:READings]:BORDer	Query or set the transmission order o binary data
:FORMat[:READings][:DATA]	Query or set the data transmission format
:INITiate[1]:CONTinuous	Query or set the trigger status
:INITiate:CONTinuous:ALL	Query or set the trigger state of al channels
:INITiate:CONTinuous:SEQuence[1]	Query or set the trigger status
:INITiate[1][:IMMediate]	for Set to be in Wait fo Trigger state only.

Appendixes	_	
Command	operatio n	Brief description of functions
:INITiate[:IMMediate]:ALL	for setting only.	Set all channels to be in Wait for Trigger state
:INITiate[:IMMediate]:SEQuence[1]	for setting only.	Set to be in Wait for Trigger state
<u>:INPut:TRIGger:IMPedance</u>		Query or set the trigger input impedance. Note: The 87234 does not support this command at the moment. This command is used for expansion.
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]?	For query only.	Set the specified measurement as absolute power measurement, turn off relative measurement, and return the measured value
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence?	For query only.	Set the specified measurement as differential power measurement, turn off relative measurement, and return the measured value
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence:RELative?	For query only.	Set the specified measurement as differential power measurement, turn on relative measurement, and return the measured value
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]:RATio?	For query only.	Set the power measurement mode of the specified measurement as ratio measurement, turn off relative measurement, and return the measured value
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]:RATio:RELative?	For query only.	Set the power measurement mode of the specified measurement as ratio measurement, turn on relative measurement, and return the

	Appendix A Zoom Table of SCPI Classified by Subsystem	
Command	operatio n	Brief description of functions
		measured value
:MEASure[1] 2 3 4[:SCALar][:POWer][:AC]:RELative?	For query only.	Set the specified measurement as absolute power measurement, turn on relative measurement, and return the measured value
:MEMory:CATalog[:ALL]?	For query only.	Enumerate the user configurations in the 87234, including storage call configuration, frequency response offset table (FDO), etc
:MEMory:CATalog:STATe?	For query only.	Enumerate the storage call configuration in the 87234
:MEMory:CATalog:TABLe?	For query only.	Enumerate the frequency response offset table in the 87234
:MEMory:CLEar[:NAME]	for setting only.	Used to clear the frequency response offset table or storage call table specified in the power
:MEMory:CLEar:TABLe[1] 2 3 4 5 6 7 8 9 10	for setting only.	Clear the specified frequency response offset table
:MEMory:FREE[:ALL]?	For query only.	Query the total number of bytes unused in the user configuration space and the number of bytes
:MEMory:FREE:STATe?	For query only.	Query the total number of bytes unused in the storage call space and the number of bytes
:MEMory:FREE:TABLe?	For query only.	Query the total number of unused bytes and the number of bytes used in the frequency response offset table

Appendixes		
Command	operatio n	Brief description of functions
:MEMory:NSTates?	For query only.	Query the number of storage call states, and always return 10
:MEMory:STATe:CATalog?	For query only.	Enumerate the names of all storage call states
:MEMory:STATe:DEFine		Query or set the name of the storage call status register.
:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:DEFine		Query or set the name in the specified frequency response offset table
:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:FREQuency		Query or set the frequency list in the specified frequency response offset table
:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:FREQuency:POINts?	For query only.	Query the frequency points in the specified frequency response offset table
:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:GAIN[:MAGNitude]		Query or set the amplitude gain list in the specified frequency response offset table
:MEMory:TABLe[1] 2 3 4 5 6 7 8 9 10:GAIN[:MAGNitude]:POINts?	For query only.	Query the amplitude gain points in the specified frequency response offset table
:MEMory:TABLe:MOVE	for setting only.	Rename the specified frequency response offset table
:MEMory:TABLe:SELect		Query or set the current frequency response offset table
:OUTPut:TRIGger[:STATe]		Query or set the trigger output enable state.
:PSTatistic[1]:CCDF:COUNt		Query or set the total number of statistics end
:PSTatistic[1]:CCDF:DATA?	For query only.	Query the statistical probability list of the 87234
:PSTatistic[1]:CCDF:DATA:MAX		Query or set the maximum value of the

Command	operatio	Brief description of
	n	functions
		X-axis of the statistical trace
:PSTatistic[1]:CCDF:DECades		Query or set the "decimal number" of the statistical vertical axis
:PSTatistic[1]:CCDF:END:ACTion		Query or set the statistics end behavior
:PSTatistic[1]:CCDF:GAUSsian:MARKer[1] 2[:SET]	for setting only.	Set the marker to the Gaussian probability curve. The 87234 does not support this command at the moment.
:PSTatistic[1]:CCDF:GAUSsian[:STATe]		Query or set the display status of Gaussian probability curve. The 87234 does not support this command at the moment.
:PSTatistic[1]:CCDF:MARKer[1] 2:DATA?	For query only.	Query the power and probability at the marker in the statistical trace
:PSTatistic[1]:CCDF:MARKer:DELTa?	For query only.	Query two power differences and probability differences (M2-M1)
:PSTatistic[1]:CCDF:MARKer[1] 2:X		Query or set the horizontal position of the marker
:PSTatistic[1]:CCDF:MARKer[1] 2:Y		Query or set the vertical position of the marker
:PSTatistic[1]:CCDF:POWer?	For query only.	Query the power at a given probability point
:PSTatistic[1]:CCDF:PROBability?	For query only.	Query the probability at a given power point
:PSTatistic[1]:CCDF:REFerence:DATA?	For query only.	Query the reference statistical probability list of the 87234
:PSTatistic[1]:CCDF:REFerence:MARKer[1] 2[:SET]	for setting only.	Set marker to reference statistics curve
:PSTatistic[1]:CCDF:REFerence:POWer:AVERage?	For query	Query the average

Appendixes		
Command	operatio n	Brief description of functions
	only.	power of the reference statistics curve
:PSTatistic[1]:CCDF:REFerence:POWer:PEAK?	For query only.	Query the peak power of the channel statistics curve
:PSTatistic[1]:CCDF:REFerence:POWer:PTAVerage?	For query only.	Query the peak to average ratio of the reference statistics curve
:PSTatistic[1]:CCDF:REFerence[:STATe]		Query or set the display status of the reference statistics curve
:PSTatistic[1]:CCDF:STORe:REFerence		When setting: store statistics curve to the reference statistics curve; When querying: query whether the reference curve exists
:PSTatistic[1]:CCDF:TABLe?	For query only.	Query the statistical list: average power, average power probability, power under 6 probabilities, peak to average ratio, and sampling times
:PSTatistic[1]:CCDF:TIME		Query or set the statistics end timing
:PSTatistic[1]:CCDF:TRACe:MARKer[1] 2[:SET]	for setting only.	Set marker to channel statistics curve
:PSTatistic[1]:CCDF:TRACe:POWer:AVERage?	For query only.	Query the average power of the channel statistics curve
:PSTatistic[1]:CCDF:TRACe:POWer:PEAK?	For query only.	Query the peak power of the channel statistics curve
:PSTatistic[1]:CCDF:TRACe:POWer:PTAVerage?	For query only.	Query the peak to average ratio of the channel statistics curve
:PSTatistic[1]:CCDF:TRACe[:STATe]		Query or set the display status of channel statistics curve
:PSTatistic[1]:CCDF:Y:MAX		Query or set the

Appendix A Zoom Table of SCPI Classified by Subsys		SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
		"maximum probability value" for statistical display
:READ[1] 2 3 4[:SCALar][:POWer][:AC]?	For query only.	Set the specified measurement as absolute power measurement, turn off relative measurement, and return the measured value
:READ[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence?	For query only.	Set the specified measurement as differential power measurement, turn off relative measurement, and return the measured value
:READ[1] 2 3 4[:SCALar][:POWer][:AC]:DIFFerence:RELative?	For query only.	Set the specified measurement as differential power measurement, turn on relative measurement, and return the measured value
:READ[1] 2 3 4[:SCALar][:POWer][:AC]:RATio?	For query only.	Set the power measurement mode of the specified measurement as ratio measurement, turn off relative measurement, and return the measured value
:READ[1] 2 3 4[:SCALar][:POWer][:AC]:RATio:RELative?	For query only.	Set the power measurement mode of the specified measurement as ratio measurement, turn on relative measurement, and return the measured value
:READ[1] 2 3 4[:SCALar][:POWer][:AC]:RELative?	For query only.	Set the specified measurement as absolute power measurement, turn on relative measurement, and return the measured value
[:SENSe[1]:]AVERage[1] 2:COUNt		Query or set the average number of channel

Appendixes		
Command	operatio n	Brief description of functions
		measurements and the average number of videos.
[:SENSe[1]:]AVERage:COUNt:AUTO		Query or set the channel measurement auto-average state
[:SENSe[1]:]AVERage:RESet	for setting only.	Clear the averaging buffer and restart averaging.
[:SENSe[1]:]AVERage:SDETect		Query or set the channel step detection state
[:SENSe[1]:]AVERage[1] 2[:STATe]		Query or set the channel measurement average and video average switch state
[:SENSe[1]:]AVERage[1] 2[:STATe]		Query or set the channel measurement average and video average switch state
[:SENSe[1]:]BANDwidth BWIDth:VIDeo		Query or set the measured video bandwidth.
[:SENSe[1]:]BUFFer:COUNt		Query or set the buffer size of external trigger measurement, which is only used for external trigger measurement.
[:SENSe[1]:]BUFFer:MTYPe		Query or set the external trigger buffer measurement type, which is only used for external trigger measurement.
[:SENSe[1]:]CORRection:CSET2:STATe		Query or set the enable state of the frequency response offset table
[:SENSe[1]:]CORRection:DCYCle[:INPut][:MAGNitude]		Query or set the channel duty cycle setting value for pulse power measurement.
[:SENSe[1]:]CORRection:DCYCle[:INPut]:STATe		Query or set the channel duty cycle enable switch for pulse power measurement.

Appendix A Zoom Table of SCPI Classified by Sub		SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
[:SENSe[1]:]CORRection:FDOFfset[:INPut][:MAGNitude]?	For query only.	Query the frequency response offset factor.
[:SENSe[1]:]CORRection:GAIN[1] 2 3 4[:INPut][:MAGNitude]		Query or set the channel offset
[:SENSe[1]:]CORRection:GAIN[1] 2 3 4[:INPut]:STATe		Query or set the channel offset enable state
[:SENSe[1]:]DETector:FUNCtion		Query or set the detection measurement method
[:SENSe[1]:]FREQuency[:CW FIXed]		Query or set the frequency.
[:SENSe[1]:]FREQuency[:CW FIXed]:STARt		Query or set the frequency for the start frequency of the external trigger buffer sweep measurement.
[:SENSe[1]:]FREQuency[:CW FIXed]:STEP		Query or set the frequency step number for the external trigger buffer sweep measurement.
[:SENSe[1]:]FREQuency[:CW FIXed]:STOP		Query or set the frequency for the stop frequency of the external trigger buffer sweep measurement.
[:SENSe[1]:]LIST:FREQuency:STARt		Query or set the start frequency of the timeslot list sweep measurement.
[:SENSe[1]:]LIST:FREQuency:STOP		Query or set the stop frequency of the timeslot list sweep measurement.
[:SENSe[1]:]LIST:MTYPe		Query or set the timeslot list sweep measurement type, which is only used for external trigger measurement.
[:SENSe[1]:]LIST:POINts		Query or set the number of points for timeslot list sweep measurement, which is only used for external trigger measurement.

Appendixes		
Command	operatio n	Brief description of functions
[:SENSe[1]:]LIST:STATe		Query or set the timeslot list sweep measurement state.
[:SENSe[1]:]LIST:TSCount		Query or set the number of slots for the timeslot list sweep measurement.
[:SENSe[1]:]LIST:SLot:EXCLude:OFFSet:TIME		Query or set the start time (offset time) of the "measurement exclusion area" relative to the start position of the slot.
[:SENSe[1]:]LIST:TSLot:EXCLude:TIME		Query or set the time duration of the "measurement exclusion area" relative to the start position of the slot.
[:SENSe[1]:]LIST:TSLot:TIME		Query or set the length of time slot measurement.
[:SENSe[1]:]LIST:TSLot:TREF[1] 2		Query or set the left and right reference values (percentage relative to the slot duration) of the timeslot measurement gate
[:SENSe[1]:]MRATe		Query or set the measurement speed.
[:SENSe[1]:]PULSe[1] 2-20:DISTal		Query and set the far point in the pulse measurement
[:SENSe[1]:]PULSe[1] 2-20:MESial		Query and set the middle point in the pulse measurement
[:SENSe[1]:]PULSe[1] 2-20:PROXimal		Query and set the near point in pulse measurement
[:SENSe[1]:]PULSe[1] 2-20:UNIT		Query and set the unit of pulse definition
[:SENSe[1]:]SWEep[1] 2 3 4:AUTO		Query or set the automatic gate state of the specified gate
[:SENSe[1]:]SWEep:APERture		Query or set the measurement aperture or

Appendix A Zoom Table of SCPI Classified by Sul		SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
		measurement time interval.
[:SENSe[1]:]SWEep:APERture:AUTO		Query or set the auto-measurement aperture or measurement interval state.
[:SENSe[1]:]SWEep[1] 2 3 4:AUTO:REFernce[1] 2		Query or set the reference ratio of the specified gate
[:SENSe[1]:]SWEep[1] 2 3 4:OFFSet:TIME		Query or set the start time of the specified gate
[:SENSe[1]:]SWEep[1] 2 3 4:TIME		Query or set the time length of the specified gate
[:SENSe[1]:]TRACe:AUToscale	for setting only.	Auto Set
[:SENSe[1]:]TRACe:OFFSet:TIME		Query or set the horizontal start time of the channel trace
[:SENSe[1]:]TRACe:TIME		Query or set the time duration of the channel trace
[:SENSe[1]:]TRACe:UNIT		Query or set the unit of channel trace
[:SENSe[1]:]TRACe:X:SCALe:PDIV		Query or set the horizontal scale
:SERVice:BIST:TBASe:STATe		Query or set the state of the internal 10MHz time base signal output at the "trigger output" port
:SERVice:BIST:VIDeo:STATe		Query or set the state of video output signal output at the "trigger output" port
:SERVice:SENSor[1]:CDATe?	For query only.	Query the calibration date of the 87234
:SERVice:SENSor[1]:CPLace?	For query only.	Query the calibration location of the 87234
:SERVice:SENSor[1]:FREQuency:MAXimum?	For query only.	Query the maximum frequency of the 87234

Appendixes		
Command	operatio n	Brief description of functions
:SERVice:SENSor[1]:FREQuency:MINimum?	For query only.	Query the minimum frequency of the 87234
:SERVice:SENSor[1]:SNUMber?	For query only.	Query the serial number of the 87234
:SERVice:SENSor[1]:TYPE?	For query only.	Query the type of the 87234
:SERVice:SNUMber		Query or set the serial number of the 87234
:STATus:DEVice:CONDition?	For query only.	Query the value in the device status condition register
:STATus:DEVice:ENABle		Query or set the device status event enable register
:STATus:DEVice[:EVENt]?	For query only.	Query the device event register
:STATus:DEVice:NTRansition		Query or set the negative transition filter of the device
:STATus:DEVice:PTRansition		Query or set the positive transition filter of the device
:STATus:OPERation:CALibrating[:SUMMary]:CONDition?	For query only.	Query the value in the calibration operation status condition register
:STATus:OPERation:CALibrating[:SUMMary]:ENABle		Query or set the calibration operation event enable register
:STATus:OPERation:CALibrating[:SUMMary][:EVENt]?	For query only.	Query the calibration operation event register
:STATus:OPERation:CALibrating[:SUMMary]:NTRansition		Query or set the negative transition filter for calibration operation
:STATus:OPERation:CALibrating[:SUMMary]:PTRansition		Query or set the positive transition filter for calibration operation
:STATus:OPERation:CONDition?	For query only.	Query the value in the operation status condition register
:STATus:OPERation:ENABle		Query the value in the operation status

	Appendix A Zoom Table of	SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
		condition register
:STATus:OPERation[:EVENt]?	For query only.	Query the operation status event register
:STATus:OPERation:LLFail[:SUMMary]:CONDition?	For query only.	Query the value in the lower limit detection operation status condition register
:STATus:OPERation:LLFail[:SUMMary]:ENABle		Query or set the event enable register for lower limit detection operation
:STATus:OPERation:LLFail[:SUMMary][:EVENt]?	For query only.	Query the event register for lower limit detection operation
:STATus:OPERation:LLFail[:SUMMary]:NTRansition		Query or set the negative transition filter for lower limit detection operation
:STATus:OPERation:LLFail[:SUMMary]:PTRansition		Query or set the positive transition filter for lower limit detection operation
:STATus:OPERation:NTRansition		Query or set the negative transition filter for operation state
:STATus:OPERation:PTRansition		Query or set the positive transition filter for operation state
:STATus:OPERation:SENSe[:SUMMary]:CONDition?	For query only.	Query the value in the sensor operation status condition register
:STATus:OPERation:SENSe[:SUMMary]:ENABle		Query or set the sensor operation event enable register
:STATus:OPERation:SENSe[:SUMMary][:EVENt]?	For query only.	Query the event register for sensing operation
:STATus:OPERation:SENSe[:SUMMary]:NTRansition		Query or set the negative transition filter for sensing operation
:STATus:OPERation:SENSe[:SUMMary]:PTRansition		Query or set the positive transition

Appendixes		
Command	operatio n	Brief description of functions
		filter for sensing operation
:STATus:OPERation:TRIGger[:SUMMary]:CONDition?	For query only.	Query the value in the trigger operation status condition register
:STATus:OPERation:TRIGger[:SUMMary]:ENABle		Query or set the trigger operation event enable register
:STATus:OPERation:TRIGger[:SUMMary][:EVENt]?	For query only.	Query the event register for trigger operation
:STATus:OPERation:TRIGger[:SUMMary]:NTRansition		Query or set the negative transition filter for trigger operation
:STATus:OPERation:TRIGger[:SUMMary]:PTRansition		Query or set the positive transition filter for trigger operation
:STATus:OPERation:ULFail[:SUMMary]:CONDition?	For query only.	Query the value in the upper limit detection operation status condition register
:STATus:OPERation:ULFail[:SUMMary]:ENABle		Query or set the event enable register for upper limit detection operation
:STATus:OPERation:ULFail[:SUMMary][:EVENt]?	For query only.	Query the event register for upper limit detection operation
:STATus:OPERation:ULFail[:SUMMary]:NTRansition		Query or set the negative transition filter for upper limit detection operation
:STATus:OPERation:ULFail[:SUMMary]:PTRansition		Query or set the positive transition filter for upper limit detection operation
:STATus:PRESet	for setting only.	Preset some state registers
:STATus:QUEStionable:CALibration[:SUMMary]:CONDition?	For query only.	Query the value in the calibration questionable status condition register
:STATus:QUEStionable:CALibration[:SUMMary]:ENABle		Query or set the calibration

Appendix A Zoom Table of SCPI Classified by Subsyst		SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
		questionable event enable register
:STATus:QUEStionable:CALibration[:SUMMary][:EVENt]?	For query only.	Query the calibration operation event register
:STATus:QUEStionable:CALibration[:SUMMary]:NTRansition		Query or set the questionable negative transition filter for calibration operation
:STATus:QUEStionable:CALibration[:SUMMary]:PTRansition		Query or set the questionable positive transition filter for calibration operation
:STATus:QUEStionable:CONDition?	For query only.	Query the value in the questionable status condition register
:STATus:QUEStionable:ENABle		Query or set the questionable status event enable register
:STATus:QUEStionable[:EVENt]?	For query only.	Query the questionable status event register
:STATus:QUEStionable:NTRansition		Query or set the questionable negative transition filter for operation state
:STATus:QUEStionable:POWer[:SUMMary]:CONDition?	For query only.	Query the value in the power questionable status condition register
:STATus:QUEStionable:POWer[:SUMMary]:ENABle		Query or set the power questionable event enable register
:STATus:QUEStionable:POWer[:SUMMary][:EVENt]?	For query only.	Query the questionable event register for power operation
:STATus:QUEStionable:POWer[:SUMMary]:NTRansition		Query or set the questionable negative transition filter for power operation
:STATus:QUEStionable:POWer[:SUMMary]:PTRansition		Query or set the questionable positive transition filter for power operation
:STATus:QUEStionable:PTRansition		Query or set the

Appendixes		
Command	operatio n	Brief description of functions
		questionable positive transition filter for operation state
:SYSTem:ERRor:CODE?	For query only.	Return error code from error queue
:SYSTem:ERRor[:NEXT]?	For query only.	Return error code and error information from the error queue
:SYSTem:HELP:HEADers?	For query only.	Query the list of commands supported by 87234
:SYSTem:IDN		Query or set "*IDN?" of the 87234 Query the returned user-defined string.
:SYSTem:IDN:AUTO		Query or set the "*IDN?" of the 87234 Whether to return the switch of the user-defined string.
:SYSTem:PRESet	for setting only.	Reset 87234 to the state specified by the parameter
:SYSTem:VERSion?	For query only.	Query the SCPI version number used by 87234
:TRACe[1][:DATA]?	For query only.	Query the pulse measurement trace data
:TRACe[1]:DEFine:DURation:REFerence		Query or set the reference value used to calculate the pulse duration (i.e. pulse width
:TRACe[1]:DEFine:TRANsition:REFerence		Query or set the reference value used to calculate the pulse transition duration (rise time or fall time
:TRACe[1]:MEASurement:INSTant:REFerence?	For query only.	Query the moment when the trace intersects with the given reference value
:TRACe[1]:MEASurement:PULSe[1] 2-20:AM AMPLitude?	For query only.	Query the power of the rising edge of the pulse.
:TRACe[1]:MEASurement:PULSe[1] 2-20:AT ATRailing?	For query	Query the power of the falling edge of the

Appendix A Zoom Table of SCPI Classified by Subsyste		SCPI Classified by Subsystem
Command	operatio n	Brief description of functions
	only.	pulse.
:TRACe[1]:MEASurement:PULSe[1] 2-20:DCYCle?	For query only.	Query the duty cycle of the pulse
:TRACe[1]:MEASurement:PULSe[1] 2-20:DURation?	For query only.	Query the pulse duration (i.e. pulse width)
:TRACe[1]:MEASurement:PULSe[1] 2-20:PERiod?	For query only.	Query the pulse period
:TRACe[1]:MEASurement:PULSe[1] 2-20:SEParation?	For query only.	Query the pulse interval time
:TRACe[1]:MEASurement:PULSe[1] 2-20:TILTed DROop?	For query only.	Query the top fluctuation of the pulse.
:TRACe[1]:MEASurement:REFerence?	For query only.	Query the power of a given reference value
:TRACe[1]:MEASurement:TILTed DROop:UNIT?	For query only.	Query or set the unit of pulse top fluctuation.
:TRACe[1]:MEASurement:TRANsition[1] 2-20:NEGative:DURatio n?	For query only.	Query the pulse negative transition duration (i.e., fall time)
:TRACe[1]:MEASurement:TRANsition[1] 2-20:NEGative:OCCure nce?	For query only.	Query the pulse negative transition (i.e., fall) moment
:TRACe[1]:MEASurement:TRANsition[1] 2-20:POSitive:DURatio n?	For query only.	Query the pulse positive transition duration (i.e., rise time)
:TRACe[1]:MEASurement:TRANsition[1] 2-20:POSitive:OCCuren ce?	For query only.	Query the pulse positive transition (i.e., rise) moment
:TRACe[1]:STATe		Query or set the trace measurement status of the channel.
:TRACe[1]:UNIT		Query or set the trace unit of a given channel
:TRIGger[1][:IMMediate]	for setting only.	Set to be in Wait for Trigger state
:TRIGger:MODE		Query or set the trigger mode of the 87234
:TRIGger[:SEQuence[1]]:COUNt		Query or set the number of trigger event

Appendixes		
Command	operatio n	Brief description of functions
		detection/measureme nt cycles.
:TRIGger[:SEQuence[1]]:DELay		Query or set the trigger delay
:TRIGger[:SEQuence[1]]:HOLDoff		Query or set the trigger holdoff
:TRIGger[:SEQuence[1]]:HYSTeresis		Query or set the trigger hysteresis of the 87234
:TRIGger[:SEQuence[1]]:IMMediate	for setting only.	Set to be in Wait for Trigger state
:TRIGger[:SEQuence[1]]:LEVel		Query or set the trigger level
:TRIGger[:SEQuence[1]]:LEVel:AUTO		Query or set the auto trigger level status
:TRIGger[:SEQuence[1]]:POSition		Query or set the position of the trigger event on the screen
:TRIGger[:SEQuence[1]]:SLOPe		Query or set the trigger type
:TRIGger[:SEQuence[1]]:SOURce		Query or set the trigger source.
:UNIT[1] 2 3 4:POWer		Query or set the unit of measured power
:UNIT[1] 2 3 4:POWer:RATio		Query or set the unit of measured ratio measurement power